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Introduction

The whole is the sum of its parts—what might those parts look like? If we have two
very different-looking sets in the plane, when can their corresponding separate parts
look alike? It is a question with some surprising answers.

In Ficure 1, two closed sets A and B are composed of disjoint subsets—A = A, U A,
and B = B, U B,—in such a way that A, is similar to B, and A, is similar to B,. For
the “summands” to be truly disjoint, we must also account for the boundaries. To
obtain the desired similarities, we assign the bottom edge of the square A, to the
rectangle A, and the top edge of the square B, to the rectangle B,. Could the same
sort of decomposition be obtained if, say, the set A was replaced by a circular disk? A
glance ahead to Ficure 3 might affect your answer. And look at Ficure 4—can each of
those sets be partitioned into two disjoint subsets so that the corresponding parts of
each set look alike? How would you bet?

B,

B
FIGURE 1

A remarkable result
Two sets A and B in the plane are homothetic, denoted A ~ B, if they are similar

and similarly oriented. For example, in Ficure 2, the sets A, B, and C are homothets
of each other, but not of set D (even though D is congruent to A) because “similarly

3
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oriented” does not permit rotations or reflections. Thus in Ficure 1, with A missing
its bottom edge and B, missing its top edge, the sets A, and B, are similar but they
are not homothetic because the similarity mapping A, onto B, involves a 180°
rotation. A homothetic transformation (or homothety) of the plane onto itself is a
mapping of the form f(v) = kv + a, where a is a constant vector and k is a positive
scalar constant. When k=1, f is a translation. When a=0 and k=1, f is the
identity mapping. When a=0 and k # 1, f is a contraction toward the origin or an
expansion about the origin, according as k <1 or k> 1. When k # 1, we may set
m=1/(1 —k) and note that

f(ma+ (v—ma)) =f(v) =kv+a=ma+k(v—ma),

thus representing f as a contraction toward or expansion about the point ma.

FIGURE 2

Using the definition, the reader will readily verify that the composition of two
homotheties is again a homothety, that the inverse of a homothety is a homothety, and
that each line is mapped by a homothety onto a parallel line.

We will say that two sets A and B are 2-homothetic, denoted A = B, if each of
them can be partitioned into two disjoint sets (A =A, UA, and B = B, U B, with
A, NA, =T =B, NB,)in such a way that A, ~B, and A, ~ B,.

In Ficure 1, if square B, were on top of rectangle B, rather than below, then A
and B would be 2-homothetic, since the bottom edges of squares A, and B, could be
assigned to A, and B, respectively, and then no forbidden rotation would be needed
to establish the similarities. But when B, is tacked onto the bottom of B,, as in
Ficure 1, it becomes an interesting exercise to try to show that A and B are
2-homothetic by finding the required partitions, remembering to take care of the
boundaries.

Another example is found in Ficure 3, which suggests an infinite nesting of
inscribed squares and disks that might show the square and the disk to be 2-homo-
thetic!!! Of course, we must always be careful of what is happening on the boundaries
of the subsets. Is it really true that a square and a disk can be built from the same two
pieces if we are allowed just expansions and contractions?

FIGURE 3
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It is certainly not obvious that the two sets in Ficure 4 are 2-homothetic, since the
sets include isolated points, whiskers, random curves, components that may not be
Lebesgue measurable (the shaded eye in B), and are generally as badly behaved as we
could draw them. However, their 2-homotheticity is a consequence of the following
remarkable result.

FIGURE 4

THEOREM 2HOM. Two sets in the plane are 2-homothetic provided each of them is
bounded and has nonempty interior.

Although Theorem 2HOM seems surprising, it turns out to be an easy corollary of
the following strengthened form of the famous Cantor—Bernstein theorem, and thus is
a nice example to show the geometric power of abstract set theory.

THEOREM CBB. If f: A — B is a function that maps a set A one-to-one into a set B
(i.e., onto a subset of B) and g: B — A is a function that maps B one-to-one into A,
then there are partitions A=A, UA, and B=B,UB, such that f(A)) =B, and
g(B,) = A,. Setting h(a) = f(a) foralla € A, and h(a) =g~ '(a) forall a € A,, we
have a one-to-one mapping h of A onto B.

Proof of Theorem 2HOM. Suppose that A and B are both bounded, and each has
an interior point. Since A has an interior point, A contains an entire circular disk C,
and since B is bounded, a sufficiently great expansion of C about its center produces
a larger disk D that contains B. The inverse of this expansion is a contraction (hence
a homothety) that maps B into A. Similarly, there is a contraction that maps A into
B. Since these contractions are clearly one-to-one, an application of Theorem CBB
immediately yields the stated conclusion. |

Under the hypotheses of Theorem 2HOM, there are infinitely many contractions
that pull set A into set B, and infinitely many that pull B into A, so there are
infinitely many partitions A = A, U A, and B = B, U B, for showing that A and B are
2-homothetic. Nevertheless, it is an interesting exercise to try to draw (or even
imagine) such a partition in specific cases such as the one provided by Ficure 4.

The original Cantor—Bernstein theorem asserts the existence of a one-to-one
mapping h of A onto B, without specifying the relationship of h to the original
mappings f and g. According to Fraenkel [8], the stronger form stated above is due to
Banach [1], so we think of it as the Cantor—Bernstein—Banach (CBB) theorem. (The
name of Schréder is often associated with the Cantor—Bernstein theorem. However,
according to [8], the theorem was conjectured by Cantor, the first complete published
proof was due to Bernstein, and an independent proof of Schréder turned out to be
defective.) See [5] for an extension of the CBB theorem.

The first explicit statement of Theorem 2HOM may have been the one in [12], but
Banach in [1] had already mentioned the possibility of geometric applications of the
CBB theorem, and Theorem CBB was used in [2] to establish the famous Banach—Tarski
paradox (see (7) below).
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Two proofs of the CBB theorem

With such a strong corollary, you might expect that CBB has a difficult proof, but the
classic proof of Banach [1] (found also in Birkhoff and MacLane [4] ) is short and easy.
It is the second proof below. Another nice proof of the CBB theorem uses a
fixed-point theorem of Birkhoff [3]. To set this up, we need a quick review of
complete lattices.

A partial order for a set S is a binary relation < on S (i.e., a subset of the
Cartesian product S X S) with these properties:

1) Reflexivity: For each a € S the pair (a, @) is an element of the subset < of § X S.
(We usually write @ <b to mean (a, b) € <. Thus reflexivity is the condition that
a<aforall a€8.)

2) Anti-symmetry: If a <b and b <a then a=b.

3) Transitivity: If a <b and b <c then a <c.

The pair (S, <) is called a partially ordered set, or poset. For example, the real
numbers form a poset with their usual ordering. But the reals have the additional
property that every two elements are comparable, and hence we say that they form a
totally ordered set. However, in posets it may happen that two elements ¢ and b are
not comparable—i.e., neither ¢ <b nor b <a is true.

An element s €S is a lower bound for the set TCS if s<t for each t€T.
Similarly w € S is an upper bound for T if t <u for each t € T. The (necessarily
unique) least upper bound for a subset T is an upper bound m for T such that m <u
for every upper bound u. Greatest lower bounds are similarly defined. A lattice is a
non-empty poset in which each set of two elements (and hence each nonempty finite
subset) has a least upper bound and a greatest lower bound. A complete lattice is a
lattice in which every nonempty subset has a least upper bound and a greatest lower
bound. The upper bound for the whole set S is usually denoted 1 and the lower
bound for S is denoted 0.

Some examples might help.

Example 1. Let L denote the integer lattice in the Cartesian plane—the set of all
points with both coordinates integers. If we define (x, y) < (u, v) to mean x <u and
y < v (in the usual sense) then (L, <) is a poset. Some pairs of points, such as (5, 8)
and (9, 6), are not comparable. But the point (5,6) is the greatest of all their lower
bounds. The finite part of L shown in Ficure 5 is a complete lattice. The upper right
point is the upper bound and the lower left point is the lower bound for the whole
subset shown. However, the infinite set L is a lattice but not a complete lattice.

(] (5.,8) [ ) [ ] [ ) [ )
Coee) T (@8

FIGURE 5
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Example 2. Let 2(R?) denote the collection of all subsets of the plane R*. Then
(2(R?), ©) is a complete lattice. For any nonempty collection C of elements of
ZP(R?), the least upper bound (resp. greatest lower bound) of C is the union (resp.
intersection) of all elements of C.

When a function f maps a set S into itself, a point ¢ €S is a fixed point for f if
f(a) = a. Fixed-point theorems are among the most interesting and useful tools in
mathematics. Theorem FP below is an all-time favorite that will be used to give a
proof of the CBB theorem. A mapping f of a poset (S, <) into a poset (W, <) is
order-preserving if x <y in S implies f(x) < f(y) in W.

THEOREM FP [3]. Every order-preserving function f of a complete lattice (S, <)
into itself has a fived point.

Proof of Theorem FP. Let T={a € S|a <f(a)}. Clearly0 € T so T # . Let m be
the least upper bound of T. Since ¢ <m for every t € T, and f is order-preserving,
t <f(t) <f(m), so f(m) is also an upper bound of T. Hence m < f(m) because m is
the least upper bound of T. Thus f(m) < f(f(m)), so f(m) €T and f(m) < m. Since
m < f(m) and f(m) <m, it follows from anti-symmetry that f(m) =m and m is the
desired fixed point. u

Fixed-point Proof of the CBB Theorem. Assuming without loss of generality that the
sets A and B are disjoint, we will use the given one-to-one into functions f: A — B
and g: B — A to define a function ¢ from the complete lattice (Z?( A), C) into itself.
For each subset of A, let C'={a € Ala & C} denote the complement of C in A.
Similarly if D € B let D' denote the complement of D in B. Then for each C CA
define @(C) = g((f(C"))). That is, we take the complement of C in A, map it into B
by f, take the complement in B, and map this complement back into A by g. Since
C, CC, implies f(C,) cf(C,) and C} 2Cy, it is easily seen that ¢ is an order-pre-
serving mapping of 2( A) into itself. Hence by Theorem FP, ¢ has a fixed point. Call
this fixed point A,, set A, =A}, and set B, =f(A;)=B)j. Then the restrictions
f+ A, — By and g: B, > A, are one-to-one and onto, and the partitions A=A, UA,
and B = B, U B, are the ones desired for the CBB Theorem. u

Classic Proof of the CBB Theorem [1,4]). We again assume that the sets A and B are
disjoint. A point x €A U B is a parent of a point y EAUB if x €A and f(x) =y,
or x €B and g(x)=y. Since A and B are disjoint and the mappings f and g are
one-to-one, each point of A U B has at most one parent. That parent (if it exists) has
at most one parent, etc. This sequence of parents forms the ancestral chain of y. The
sequence may be empty, as would be the case if y € B\ f(A) or y € A\ g(B). It may
be infinite, as would be the case if y=g(f(y)) or y=f(g(y)). If the ancestral
chain is neither empty nor infinite, it terminates in a point that has no parent. (See
Ficure 6).

Now let A, A4, and A, denote the points of A for which the length of the
ancestral chain is respectively even, odd, or infinite. This partitions A, and B has a
similar partitioning. It is clear that f maps A, into B,, A_,., into By, and A 44 into
B\ Further, since each point of B, U B 4y has a parent, the first two mappings are
onto; that is, f(A,) =B, and f(A,,,) =By Similarly, g(B) = A, and g(B,,.,) =
A qq- Setting

A=A, UA,, A,=Agy, B, =B, UB,, and B,=B

even even ?

we have the partitions whose existence is asserted by the CBB Theorem. |
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Ys: 1B

Yo

f(A)

FIGURE 6

ExampPLE 3. In Ficure 6, the contraction f about the point y, in the interior of B
maps set A homothetically and one-to-one into set B. Similarly, the contraction g
about the point x, €A is a homothety which maps B one-to-one into A. Clearly,
each of the points x,, y,, and y is an orphan (i.e., has no parent). Thus the ancestral
chain of x; =g(y) is just {y}, of (odd) length 1. Since x. =g(y.)=g(f(x.), the
ancestral chain of y, € B is {x,, y., *., Y, ...}, of infinite length.

Remarks and open problems

1) The setting for Theorem 2HOM was the plane R2, but the definitions (2-homo-
thetic, bounded, interior) and the proof of Theorem 2HOM are all valid in an
arbitrary (even infinite-dimensional) normed vector space.

2) When two subsets A and B of d-space are 2-homothetic and are both geometri-
cally “nice” in some sense, it is interesting to ask how nice their summands (the
sets A, A,, B}, B, in the partitions) can be made. Of course, niceness is in the
eye of the beholder, and in any case the answer must depend on geometric or
topological properties of the sets A and B. In particular, if the set A is
connected, then it is impossible for A, and A, both to be closed (or both to be
open) relative to A unless one of A, or A, is empty. However, one might hope to
have A, closed and A, open relative to A, and then of course B, closed and B,
open relative to B. Ficure 7 shows that this can happen in some cases. In Ficure
7a, the sets A and B are both bounded and convex, but neither is compact. In
Ficure 7b, the sets A and B are both compact, but neither is convex. However, it
seems that the following problems are open for each d > 2:

(a) Is there an example of two d-dimensional compact convex subsets A and B
of d-space such that A and B are not homothetic but they are 2-homothetic
by means of convex summands, A=A, UA, and B = B, U By, in such a way
that the sets A, and B, are not only convex but also closed?

(b) If A and B are both d-dimensional compact convex sets in Euclidean
d-space, must they be 2-homothetic by means of summands A; and B, that
are connected?
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______ A.=B

w

FIGURE 7

In both cases, A; and B, are closed relative to the sets A=A, UA, and B=B, UB,
respectively. In 7a, A and B are convex but not compact, and in 7b they are compact but not
convex.

3)

4)

In connection with problem 2(a), note that if A and B are compact subsets of
d-space, each with nonempty interior, and A=A, U A, and B = B, U B, are the
partitions constructed in the proof of Theorem 2HOM, then each A, and each B,
is both an F,-set (the union of countably many closed sets) and a Gyset (the
intersection of countably many open sets). This follows from Banach’s proof of
the CBB Theorem. For let f and g be homotheties which, respectively, carry A
into B and B into A. Define A, = A, B, = B, and having defined A, and B, set
A;;, =g(B;) and B,,, =f(A,). Then each A, and each B, is compact, hence is
a G set, and

AOQAIQ'"’ BOQBIZ—)“"

It follows that each set A,\A,,, is o-compact, as is each set B,\ B,,;. Now
define

Acen = (Ag\A]) U (A5\A3) U U (Ay;_5\A4y;_) U
Aja=(A\A) U(A\A) U U (A2j—l\A2j) U
A.=A,NA N,
and
Been = (By\B;) U (By\B;) U -+ U (By;_5\By;_;) U

Boga = (B;\B,) U(B;\B,) U U (B2j—l\B2j) U
Bw=BonBln"' .

Then each of the sets A, and B, is compact, each of the sets A, Aoid> Bevens
B,y is o-compact, and we have already seen that the desired partition is obtained
by setting

Al =A ] Aeea A2 = Aodd 5 Bl = Bodd U Bw, and 32 = Beven .

even

Since the disjoint sets A; and A, are both F,-sets and their union is the compact
set A, A; and A, are both also Gg-sets. Similarly, B, and B, are both F,-sets
and Gg-sets.

It is an easy exercise to show that for any two homotheties f and g, the
commutator fgf 'g™' is merely a translation. Thus, although the group of
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5)

6)

homotheties is not commutative, its first commutator subgroup is commutative.
This (the fact that the group of homotheties is solvable) is a key to showing that
Lebesgue measure in d-space can be extended to a finitely additive measure that
is defined for all bounded sets and is not merely invariant under translation but
multiplies properly under all homotheties. When d =2, a similar conclusion
applies to the group of transformations of the plane generated by the rotations
and the homotheties. (See [20], Chapter 10.)

It is easy to see that the homothety relation ~ is reflexive, symmetric, and
transitive. In particular, if B=kA +a and C=mB+b, then C=(km)A +
(ma +b), so A~ C. The 2-homothety relation = is reflexive and symmetric, but
it is not transitive. Ficure 8 shows sets A, B, and C, made up of parallel
half-open intervals in the plane, with A =B and B = C, but it is not true that
A=C.

C

A B
FIGURE 8

For any integer r with 2 <r <|A|=|B| we may define sets A and B to be
r-homothetic in the obvious way: there exist partitions A=A, U - UA, and
B=B,U - UB, and homotheties f,(x) =k,x+a; such that f,(A,) =B, for
each i. If, in addition, each A, and each B, has at least two points and the scalars
ky,....k, are all different, we say that the sets A and B are nontrivially
r-homothetic. In Ficure 8, A is nontrivially 3-homothetic to C but A and C are
not 2-homothetic. Other aspects of r-homothety make easy exercises.

7) A new family of problems arises when the group of homothetic transformations is

8)

9)

replaced by some other group of transformations such as the rigid motions. The
most famous result in this direction is the Banach—Tarski paradox [2], asserting
that if d >3 and A and B are subsets of d-space each of which is bounded and
has nonempty interior, then A and B are equidecomposable in the sense that for
some finite n, A can be partitioned into n sets A,,..., A, and B can be
partitioned into n sets B, ..., B, such that A; is congruent to B, for 1 <i <n.
See [18] and [9] for expositions of some aspects of the Banach—Tarski result, and
see Wagon’s book [20] for an extensive study of the “paradox” and related
material.

In connection with the questions in 2), see [17] and [11] for some results and
problems that involve decomposing two convex sets into a finite number of
respectively congruent convex parts. And see [6] for a proof that in partitioning a
ball of unit radius (in 3-space) into five sets that can be rearranged to form a
partition of the union of two such balls, it can be arranged that each of the five
sets is both connected and locally connected (of course, they cannot all be
measurable).

Because of the measure-extension result mentioned in 4), if two subsets of the
plane are both bounded and Lebesgue measurable, they cannot be equidecom-
posable unless they have the same measure. In 1925, Tarski [19] posed the
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following modern version of the problem of squaring the circle: If D is a circular
disk and S is a square of the same area, are D and S equidecomposable? Dubins,
Hirsch, and Karush [7] showed that a circle and a square cannot be decomposed
into respectively congruent parts that could (intuitively speaking) be cut out with
a pair of scissors. However, Tarski’s question did not restrict the nature of the sets
in the partitions, and a brilliant affirmative solution to the question was given by
Laczkovich [15] in 1990. His partitions involve a very large number of sets, but he
requires only translations rather than the full group of rigid motions to move
these sets from a disk-filling position to a square-filling position. For an excellent
exposition of his work, see the article by Gardner and Wagon [10]. See also [14]
and the 1994 survey article by Laczkovich [16].

10) Even though Theorem CBB has the remarkable decomposition result Theorem

2HOM as an easy consequence, neither proof of CBB used the axiom of choice.
This is in contrast to the situation for the measure-extension result mentioned in
4), for the Banach—Tarski paradox in 7), and for the theorem of Laczkovich in 9).

Acknowledgment. We are indebted to Jack Robertson for suggesting that we write this article and to him,
Stan Wagon, Richard Gardner, and Kevin Short for helpful comments. A shorter version appeared in [13].
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Introduction

Tilings have appeared in human activity since prehistoric times. They are used in the
design of floor and wall coverings for cathedrals, commercial buildings, and personal
dwellings. Mathematicians study the geometric structure of tilings. A checkerboard is
an elementary example of a similarity tiling, one that is composed of smaller tiles
(rep tiles) of the same size, each having the same shape as the whole. Each rep tile in
the checkerboard is the scaled and translated image of the entire board. For the
checkerboard in Ficure la, the lower left tile is the image of the checkerboard under

(U3

1,0 - S
. (1,0 b (1,0)

Checkerboard tiling Triangular tiling

FIGURE 1
X1
Xy |

where [il denotes any point on the checkerboard. The whole checkerboard can be

£

the mapping

O »m=
o

eI

Xo

f= ] -

formed using translates of this smaller image. One goal of this paper is to investigate
the properties of linear mappings that generate similarity tilings.

* Research was conducted while on professional leave from the University of Akron.
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In a more general setting the mappings may also involve rotations. For instance, the
equilateral triangle T in Ficure 1b is a similarity tiling since it is composed of four
smaller equilateral triangles T, T,, T5, T,. Consider the mappings defined by

[ x, K S5 0~
==l o s
[ 5

I ES (0.5 . 0],
for= Xy ” i 0 * 0 5|~

] Joes 5 0][x,
fa=1y, V2 R R

Jw] [o7s -5 0l[x,
fi=ly, Nz oo —5||x|

Then T,= ];(T), j=1,...,4. Notice that the matrices “shrink” the tiling T to a rep
tile, and the last matrix also performs a rotation. Adding the fixed vectors to the
corresponding rep tiles translates them to their appropriate locations.

The checkerboard and triangle tiles have straight edges. In this paper we are
interested in generating tilings with tiles (fractiles) whose boundaries are fractal
curves. (Various definitions of fractal curves are given in [2], [11], and [12]. However,
as Barnsley states in [2, p. 33], fractals are best explained by the many pictures and
contexts that refer to them.) We will use an iterative process, involving repeated
compositions of two or more functions, to generate these fractal tilings. The functions
are constructed from translates of the inverse of a linear transformation g(z) = Mz,
where M is an invertible 2 X 2 matrix with integer entries. (Geometric properties
used later in this article require that M be an integer matrix.) The inverse transforma-
tion g~'(z) is the “shrinking function” that maps the entire fractal tiling onto a
fractile. Before outlining the underlying mathematics, we briefly describe the basic
algorithm and illustrate it with some examples.

Examples of fractal tilings

a

As a simple example, consider the matrix M = [b

_l:l], where the integers a and b

are chosen so that a® +b® > 1. If we interpret [t‘] and [Z] as points in the complex

axy— DXy

plane, then M zl] = represents complex multiplication of x, +ix, by

29 axy + by
a +ib. Next, we choose a collection of vectors to translate copies of the fractile so that

they are positioned correctly in the tiling. Notice that the unit square, determined by

the vectors [(1)] and [(1)], is mapp¢d by M onto the square S, of area m =a” +b?,

spanned by vectors v, = and v, = —l(’l . Define the set & = {rj} of vectors with

a
b
integer coordinates that lie in or on S but not on the two outer edges that do not have
the origin as a vertex. Then & contains exactly m vectors; we will use them for the
translation vectors {rj}. The tiling can be drawn by a computer using the iterative

procedure illustrated in Examples A and B.
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Example A. Let M = [_i i], then m =2. From the square in Ficure 2a we

determine the two translation vectors r, = [0 and r, = (1) . Then & ={r,,r,}, and

0
for z =(x,, x,), we define the mappings f,(z) :=r; + M~'(z) for j = 1,2. That is,

K 0 S5 =35|x
h=1u171ol s 5|l
_ xl 1 .5 - .5 xl
fz'_x260+.5 Sz, |
To initiate the iteration process we randomly choose any point z, in the plane and
evaluate fy(z,) and fy(z,). Then for n>1, we choose recursively and randomly
z, €{f\(z,_)), fo(z,_))}. After a few iterations the generated points lie near the
tiling. So for n > 100, plot the points as they are generated. Ficure 2b shows the result
of several thousand iterations. (Increasing the number of iterations may improve the
quality of the computed image. Special purpose software for drawing fractal tilings is
described at the end of this paper.) The boundary of the spiral, the snowflake curve, is

an example of a fractal curve. Mandelbrot [12] showed that the distance along the
boundary between any two points is infinite.

(L=1}

a b

Determining the translation vectors Snowflake spiral
(m=2)

FIGURE 2

The collection of functions { fj} is called an iterated function system. The set A of
randomly generated points that results from this process is called the attractor. Notice
that A=A, UA,, where A; =f(A) and the A;’s have disjoint interiors.

Using M from Example A, the reader can explore the four different tilings

generated when r, is replaced by any of [ _(1)] , [ _?] , [f] , and [;] Observe that the
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shape of the tiling may change with the choice of translation vector.

Example B. Let M = [ _i f] As shown in the parallelogram in Ficure 3a, let

r, = [g], r,= (1)] and r; = [i] This choice of vectors produces a tiling with the

three tiles stacked horizontally as shown in Ficure 3b. As an exercise, we recommend
that the reader choose translation vectors and generate a tiling for the matrix

=l

a b
Determining the translation vectors Horizontal tiling
(m=3)

FIGURE 3

Generating the tilings

What characteristics of a matrix M and translation vectors r; determine an iterative
process that produces a desired tiling? We want the invertible integer matrix

M= [Z 5’1] to be an expansive map; i.e., all the eigenvalues of M have modulus

larger than 1. A property of expansive maps is that, for some n>0, M™" is a
contraction mapping; i.e., IM ~"z| <|z|. This ensures that iteration using the collection
of functions f,=r;+ M ™'z, j=1,...,m, produces the attractor regardless of the
choice of translation vectors {r;} or of 1n1t1al value z,. (The definition of convergence
to an attractor, using an 1terated function system, requires a knowledge of the
Hausdorff metric. For more details, see chapter 2 of Barnsley [2].)

How are translation vectors chosen to produce tilings? For a matrix M as given
above, |det(M)|=lad — bc| = m is the area of the parallelogram P spanned by the

vectors v, = [f] and v, = [S] Recall that the vectors in & are those with integer

coordinates that lie in or on P, but not on the two edges that do not contain [g]. We

shall call these vectors the principal residue vectors. Let L denote the lattice of all
points in the complex plane with integer coordinates. (These points are known as
Gaussian integers.) Note that & C L. For j=1,...,m, define L, := {r + Mx: x€ L}
The vectors {r;} are said to form a complete residue system for M, i)ecause L=Uj.

and L; N L, = & whenever j # k. (For more on complete residue systems, see Cllbert

(41)
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The corner points of the parallelogram P are members of L and are linear
combinations (with coefficients either 0 or 1) of the columns of M. All integer linear
combinations of the columns of M form a subset G of L. In the plane, the subset G
forms a grid of parallelograms, each congruent to P. Each parallelogram contains m
points of L, just as P does. (We count the points in the congruent parallelograms with
the same conventions as in P. See, for example, Ficure 4a.) Each point r; of L inside
P is equivalent to one point y; (and we write r; = y;) inside each of these congruent
parallelograms. In general, as long asy, =r, = g]yand y;=r; for j=2,...,m, then
the collection {y} will also form a complete residue system for the matrix M.
Following Example A, each of the four additional vectors was equivalent to vector r,.

The location of the residue vectors determines the location of the fractiles, and the
shape of the tilings may change dramatically with different choices of residue systems.

a b
Locating the residue vectors 5-rep tile with symmetry
(m=5)

FIGURE 4

We can summarize these ideas as follows:

PROPOSITION. Suppose that M represents an expansive map, {y,,...,y,} is a com-
plete residue system for M, and f|(z) =y, + M~ 'z. Then the attractor set A= U " A,
is the union of m tiles A; that have disjoint interiors and satisfy A; = f,(A). Suciu tiles
are called m-rep tiles. (This result is Theorem 1 in [1].)

We illustrate the construction of a tiling using m-rep tiles in the following example.
Example C. Let M = [? _12]; then m = 5. As Ficure 4a illustrates, the principal
residue vectors are r; = [g] r,= [(1)] ry= [i] r,= [(2)] and ry = [;] For a more
symmetric tiling, we choose equivalent vectors for our residue system. Ficure 4b is
generated by settingy, =r |, y, =r,, y; = [ _(1)] =ryy, = [(1)] =r,,andy; = [ —(1)] =

rs. Note that the vectors {y,,ys,y,,ys}, considered as complex numbers, are the
fourth roots of unity and are symmetric about r,.
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Constructing tiles with radial symmetry

In Example B, we can replace [ﬁ] with the equivalent vector [ ':)] and use [g] s [(1)] R
and [_ (1)] as residue vectors. Observe that [(1)] and [-:)] are symmetrically located

about r, = g . Can we always find residue vectors r,,...,r, that are symmetrically

located about 7,? That is, can we construct a tiling that exhibits radial symmetry about
r,? (See, for example, Ficure 4b.) This turns out to be possible only when m =2, 3, 4,
5, and 7. (For an algebraic proof, see [8].) The cases m = 2, 3, and 5 were illustrated

in previous examples. The cases m =4 and m = 7 require more analysis.

For m =4, the matrix M= ‘c’ bl must represent an expansive map and have

determinant 4. These conditions mean that (a — AXd — A) — bc = 0 has roots A with

[Al> 1 and that ad —bc = 4. Since A= 3[(a +d) + V(a+d)2- 16], we have two
cases: (i) If (a + d)? — 16 <0, then A is complex, | +d| <4 and AA=4. Gi) If Ais

real, then |a+d|>4, and |A|>1 implies that |a +d|—V(a +d)2 —-16>2, or
la +d| < 5. Thus |a + d| = 4. From (i) and (ii) we conclude that M must be chosen so
that |a +d| < 4. In Example D, a +d = 2.

Example D. Let M = [2 _i], with principal residue vectors as shown in Ficure
5a. To achieve radial symmetry we want to generate a tiling using three vectors
0

ol

symmetrically located about r, = [ The vectors y,=r,, y,= [(1)] =ry, Yy,

= [ :;] =rjandy,=r,= [(1)] form a complete residue system for M, but they are

~1/2
not symmetric about r,. We observe that the complex third roots of unity v, = ‘/5;2 ]

vy = [(1)] , and v, = [_ ‘/3—//22] are symmetrically located about r), but that the vectors

v, and v; are not Gaussian integers. If we apply the linear transformation represented

Locating equivalent residue vectors 4-rep tile with symmetry
(m=4)

FIGURE 5


http://www.jstor.org/page/info/about/policies/terms.jsp

18 MATHEMATICS MAGAZINE

1
by B 0 ‘/—/2 then we get By, =y,, By,=v,, By;=v;, and By, =v,. The
iteration process can now be performed using the functions fi(z) =By, +h™'(2),

where h=BMB ' and h™! = 1/4 V3 /4
-3 /4 1/4

tion by the complex number 1,/4 — i3 /4.) The resulting tiling is shown in Ficure 5b.
The transformation B is the change of basis matrix that converts the lattice formed by
& into one formed by v, and v,. The reader is encouraged to try the same procedure
for other matrices M with |a +d| < 4.

To see that, even after a change of basis, the transformations produce a tiling, set

A;=f(A)=y,+ M '(A). Then A= U/, A and the As have disjoint interiors.
Set K :=B(A) for each j and K:=B(A). Then K;=B(y;+M~'(A)=By,+
BM~'B- 1B(Ai By, +h™'K. It follows that K= U, K, and that the K;’s have
disjoint interiors.

In the next example, we will construct a tiling with six unit vectors symmetrically
located on the unit circle. We use the complex sixth roots of unity, v; = exp(imj/3),
1 <j <6. In this case, det(M) =7; for reasons discussed prior to Example D, we
must restrict |a +d| < 7.

. (Note that h™' represents multiplica-

Example E. Let M= [; ] with principal residue vectors {r;} as shown in

Ficure 6a. Note that we can choose the residue vectorsy, =r,, y, =r,, y; = [ _1]

T3 Y4 = [ ] Ty, )’5—[_1

=rs, )’6'[ ]"’"6 and y, = 1 =r.. We set B

1
= [0 ‘/3/2] and note that By, =v;, 1 <j <6. We now iterate using the functions

a b

Locating equivalent residue vectors Gosper snowflake
m=7)

FIGURE 6
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f(@) =By, + h™'(2), j=1,...,7, where h™' =B~'M™'B = _\/;;Z ‘/i;: . Again
we note that the matrix h~" represents multiplication by the complex number 2/7 —
i3 /7. The resulting tiling, called the Gosper snowflake, is shown in Ficure 6b. The
Gosper snowflake changes the regular hexagon “just enough” to allow a subdivision
into seven similar fractiles.

Similarity maps

A similarity map g satisfies |g(x) — g(y)| = r|x — y|, for » > 0 and all x,y in the plane.
Geometrically, a similarity map is a composition of any collection of the four simple
mappings: scaling by a positive factor r, rotation about the origin, translation, and
reflection. If each mapping in our collection {f;} is a similarity map with 0 <r <1,
then the resulting tiling (attractor) A is self-similar. That is, A is the union of m
smaller copies of itself. In this case, the attractor has the same shape as each of
its m-rep tiles. This phenomenon appears in Ficures 2b, 4b, 5b and 6b. Each of
these rep tiles arises from a special sort of linear map: multiplication by a complex
number.

Multiplication by a complex number

As we have seen, each complex number g = a + i B corresponds to the matrix

a —-B
"=[B ]

then the matrix operations correspond to ordinary arithmetic operations on complex
numbers. If Izl > 1, the map h is expansive, since the eigenvalues of h have modulus
a®+ B%=|ql*. Also, h is a similarity map, since if z = (x1, x,), then

|h(xy, 25) [ = (@x, = Bry)* + (B, + axy) = (a® + B2)(x +13) =gl lxl*.

Ficure 2b is derived from the complex number 1 — i and Ficure 4b from 2 +i.
If @ and B are not integers, but |g|> 1, a change of basis can still produce a
similarity map h from an integer matrix M. For example, define the change of basis

matrix
1 o
»=[o _5)
set
2 2
M= 20 a*+p ;
-1 0

and let h = BMB™". If a and B are chosen so that M is an integer matrix, all earlier
methods can be applied. We illustrate the process in the next example.

Example F. Let g =1 +4/15 /2. With B=[(l) ﬂﬁgljz] we find that M

[t e

, Ty = [5], and r, = [g] A tiling can be derived
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using the functions f; = By, + h™'(2), where y, = [ _i] =r,y, =T y3= [:i] =r,,
Y, = [_(1)] ~r, and h =BMB™".

Developing similarity maps

In Examples D and E, a change of basis applied to M produced similarity mappings
and attractive tilings. This process works—i.e., we can choose a matrix B such that
h=BMB™" is a similarity mapping—if M either has (i) two real eigenvalues with
equal modulus and independent eigenvectors or (ii) a pair of complex conjugate
eigenvalues.

In case (i), let A; and A, (A; = +A,) be real eigenvalues for M with corresponding
eigenvectors v, and v,. Let B~! =[v,,v,] be the matrix with column vectors v, and
v,. Then

A O
MB™'=M[v,,v,] =[Av;, A,v,] =B~! !
0 A,
so that h:= BMB™! = ':)' fz] is a similarity map. Then h can be used to generate

the tiling with functions of the form f, = By, + h~(z), where {yj} are residue vectors
for M. (Note that h depends only on the choice of eigenvalues while the translation
vectors, and the tiling, vary with the choice of eigenvectors.) Example G illustrates this
case.

Example G. The matrix M = [f _ 2] has determinant —6 and eigenvalues A =

+ V6. Associated eigenvectors of M are v, = [(‘/5_12)/2] and v, = [(‘/532)/2] sO

‘/i . Ficure 7

_ 1 1 T . Y
B! = [(‘/__2)/2 (_¢5+2)/2] and the similarity map is h = F

shows the tiling generated using the functions f,(z)=Br;+h™'(z) with principal
residue vectors

o B O I P I P

FIGURE 7
Similarity tiling using a change of basis (m = 6)

In case (ii), suppose that M = ['c‘ 3] has complex conjugate eigenvalues A =a +if3
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andx=a—iB,B#O.Letv=[zl]=[

v tHiv . . .
v '2] be an eigenvector associated with A.
gy + iUy

Then B! =" Z‘z ] is the inverse of an appropriate change of basis matrix for
21 22
obtaining a similarity transformation h. To see this, keep in mind that the real and

imaginary parts of Mv and Av must be the same, and use the same strategy as in case

(i) to obtain MB~! =B~! [ _Z i] Therefore, h = [ _; i], which represents multi-

plication by the complex number A. Since B™! is defined using an eigenvector of M,
the matrix B can have many forms. For example, if we choose v, =1 +iv,, and
v, =0 + ivy,, we find that

1 %(a—a) 1 @
—c and B= -B
0 0 —

B c

B! =

as illustrated in Example H. If, as in Example I, we choose v, = 1 + i0, we have

1 0 1 0
B'!=|a-a —B| and B=|a—a —b
b b B B

In both cases, the transformation h = BMB™' is a similarity mapping.
Example H. Let M = [i _;]; then M has determinant 3 and eigenvalues 3 +
. . 1 H o . e
iV3 /2. With B = [0 _‘/5/2], the similarity mapping h = BMB~! is given by the
: V3 /2

vz %
= [ (1)] and iterate using the functions fj = By, +h7(2), j=1,2,3, we obtain the

so-called terdragon shown in Ficugre 8. (For comparison, see again the 3-rep tile of
Example B, and note the subtle changes in the matrices.)

3

matrix [_ ] If we choose the residue vectors y, = [g] Y, = [(1)], and y,

FIGURE 8
The Terdragon (a 3-rep tile)
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Example I. Let M = [; -;]; then det(M) =5 and M has eigenvalues A =2 +i.

The change of basis matrix B = [i (1)] yields the similarity transformation h =
BMB™! = [f ';] With the residue vectors

N E

we obtain the 5-rep tile shown in Ficure 4b.

Variations

Once one begins to generate tilings as above, ideas for modifying the figures abound.
We demonstrate a few variations below; readers are encouraged to experiment

further.

Example ]. What happens if one of the functions is removed from the iteration
process? Using the similarity transformation from Example E, we generated the

wreath in Ficure 9 by omitting the function with residue vector r;. (Compare Ficure
6b.)

FIGURE 9
Wreath (modified snowflake)

Example K Let M = [g g] and use the residue vectors y,, v;, v,, and v; from

Example D. Ficure 10a shows the result. Notice that the fractiles appear to overlap. In
fact, they do not. Ficure 10b shows a modified version of the generated tiling,
omitting the piece A, associated with the y, residue vector. This shows that the
fractiles { A;} are not simply connected.
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a b
4-rep tile Modified 4-rep tile
FIGURE 10

Note. Many computer resources are available for generating fractals. The Random

Iteration Algorithm, presented by Barnsley in [2], can be used to generate pictures
like those in this paper. Fractal Attraction [11] is another useful tool for investigating

th

ese ideas. FRACTINT, used to generate the fractals in this article, is freeware,

available from http:// spanky.triumf.ca /www / fractint /
getting.html. Generating fractals in color presents even more dramatic pictures.

Acknowledgment. The authors wish to thank Frank DeMeyer, the referees, and the editor for many
suggestions that improved this article.
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Computing Eigenvalues and Eigenvectors
Without Determinants

WILLIAM A. MCWORTER, JR.

LEROY F. MEYERS'
Obhio State University

Columbus, OH 43210

Hans Zassenhaus (1912-1991) in memoriam

Introduction

We introduce some topics from the theory of determinants solely for the
purpose of finding the eigenvalues of a linear transformation. Were it not
for this use of determinants we would not discuss them in this book.
—E. Nering [12]

Who but Simon Legree would demand that a student use a determinant to compute
by hand the eigenvalues and eigenvectors of the matrix

3 -1 -6 1
-1 3 4 -1
- o
A 1 -1 =2 11
-1 1 4 1

The student would first have to compute the 4 X 4 determinant det(tI — A), whose
entries are polynomials, then find all the zeros of the resulting polynomial of degree 4,
and finally, as is the case with this particular matrix A, find the null spaces of three
4 X 4 matrices.

To replace the computation of polynomial determinants and unwieldy null spaces,
this paper describes a faster way, of greater educational value because it requires
understanding of the concepts of eigenvalue and eigenvector. The algorithm, a
modification of McWorter [11], uses only fundamental concepts of linear algebra,
especially linear dependence and independence, for the exact computation of eigen-
vectors, and is easily extended to yield generalized eigenvectors and a Jordan basis.
The algorithm produces the eigenvectors of the above matrix A in a few minutes on
less than half a sheet of paper.

This algorithm has been used in our elementary linear algebra classes for over ten
years. One student comment seems to say it all, “I know it is faster, but with the
determinant you don’t have to think” (Denise Sayre, with permission).

The first author, reading Nering’s words quoted above while he was a fresh Ph.D.,
was motivated to eliminate the necessity for an excursion into determinant theory
even to obtain eigenvalues. The underlying idea behind his ultimate approach is not
new. A related determinant-free theoretical procedure was developed nearly 80 years
ago by Kowalewski (1917) to find the invariant factors of a matrix. Bennett [2] in 1931

Uprofessor Meyers died on November 8, 1995; he had been a member of the Ohio State University
mathematics department since 1953.
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partially remedied the lack of an explicit construction in Kowalewski’s procedure.
Krylov [9] in 1931, while investigating systems of linear differential equations, showed
how to simplify the computation of the characteristic polynomial det(tI —A) for
certain matrices A, and Danilevskil [5] in 1937 extended Krylov's algorithm to all
square matrices. (Clearer expositions of Krylov’s and Danilevskii’s algorithms are given
in Faddeev & Faddeeva [6], pp. 263—273, 285-295; (1963), pp. 231-241, 251-260.)

The present paper generalizes the algorithms of Kowalewski, Krylov, and Danilevskii
by providing an elementary and efficient symbolic algorithm for the exact computation
of eigenvectors. Section 1 illustrates the algorithm for finding eigenvalues and
eigenvectors, Section 2 provides a justification for that algorithm, and Section 3
describes, justifies, and illustrates the extension of the algorithm to find generalized
eigenvectors.

1. First example: eigenvalues and eigenvectors

We begin with definitions.

DEFINITIONS. An eigenvector of the matrix A over the field F for the eigenvalue A
in F is a nonzero vector x such that Ax = Ax. The eigenspace for A consists of all
vectors x such that Ax = Ax.

Given an n X n matrix A over an algebraically closed field F (such as the complex
numbers), the algorithm described here produces equations of the form (A — AI)x =
o, with x an eigenvector and o the zero vector.

The algorithm begins by following a procedure used in proving that every n Xn
matrix over an algebraically closed field F has at least one eigenvalue and correspond-
ing eigenvector. (See Faddeev & Faddeeva [6], Cater [3], and Axler [1].) Let u be any
nonzero vector in F". Since F" has finite dimension n, the n+1 vectors
u, Au, A’u,..., A"u are linearly dependent. Let k be the smallest positive integer
such that ayu +a, Au+ay A>u+ - +a, A*u=o, for some q,...,a, in F with
a, # 0. Algebraic closure ensures that the polynomial a, + a;t + a,t* + -+ +a;t* in
F[t] is factorable as (¢ — A)Q(¢) for some A in F and some polynomial Q(¢) in F[t].
Hence (A — AI)Q(A)u = o. The minimality of k implies that the vector Q(A)u is
nonzero and so is an eigenvector of A for the eigenvalue A.

Very little modification of the procedure just described is needed to find every
eigenvalue and a basis for each eigenspace of A. Indeed, we can illustrate the
algorithm right now on the 4 X 4 matrix A above. We will justify the algorithm in the
next section.

As in the procedure above, begin by choosing u to be any nonzero column vector
in C*, say, for perversity u=[0 1 —1 1], denoted by (0,1, —1, 1) in running
text. The vector u is called a seed because other vectors grow from it. Then compute
Au, A’u=A(Au), A*u=A(Au), etc., by successive left multiplication by A until,
for the first time, A¥u is a linear combination of the vectors u, Au, ..., A* 'u. Only

u=(0,1,-1,1), Au=(6,-2,2,-2), and A’u=(6,-2,2,—2)

need be computed, since A?u is the first of the generated vectors to be linearly
dependent on previous generated vectors. One obvious dependence relation among
the generated vectors is

A’u—Au=o. (1)
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This dependence relation alone yields two eigenvalues and their corresponding
eigenvectors. Equation (1) can be put into the desired form (A —AI)x=o0 by
factoring in two ways:

(A-1I)(Au)=0 and (A—-0I)(Au—nu)=o.

The first factorization says that Au belongs to the eigenspace for the eigenvalue 1,
and the second factorization says that Au—u belongs to the eigenspace for the
eigenvalue 0. The vectors Au and Au — u are nonzero because they are nonzero
linear combinations of the linearly independent vectors u and Au (because the
generation of vectors stopped at the first occurrence of linear dependence). Since u
and Au have already been computed, the two eigenvectors can be given explicitly
with little further work:

Au=(6,-2,2,—2) forl; Au-u=(6,-2,2, —2)—(0,1,~1,1)
= (6, —3,3, —3) for 0.

At this point, the vectors u, Au, and A’u generated so far, as well as the
eigenvectors constructed from them, span a 2-dimensional subspace of C*. Additional
independent eigenvectors, if they exist, must lie outside this subspace. Continuing the
generation with seeds outside this subspace will get any remaining eigenvectors.

Reseed with a new vector linearly independent of the vectors generated so far, say
with v = (0,0, 1,0). Then compute Av, A’v, etc., until for the first time a vector Aly
is a linear combination of previously generated vectors. Only v=1(0,0,1,0) and
Av=(-6,4, —2,4) need be computed, since the set {u, Au,v} is linearly indepen-
dent, but {u, Au, v, Av} is linearly dependent. This dependence can be expressed by
the equation

Av—2v+Au—2u=o. (2)

This dependence relation (as well as the check that {u, Au, v} is linearly independent)

can be found by the usual methods; however, we are in a classroom situation and so

we can make the dependence checks succumb to inspection, as in this example.
Equation (2) can be put into the desired form (A — AI)x = o as follows:

(A-2I)(v+u)=o.
This shows that
v+u=(0,0,1,0) +(0,1,-1,1) =(0,1,0,1)

is an eigenvector for 2. This eigenvector is linearly independent of those produced
earlier, because it involves the vector v, which is outside the subspace spanned by the
others.

At this point, the vectors u, Au, v, Av generated so far, as well as the eigenvectors
constructed from them, span a 3-dimensional subspace of C*. To obtain further
independent eigenvectors, if any, reseed with yet another vector linearly independent
of the vectors generated so far, say with w=1(0,1,0,0). The set {u, Au,v,w} is
linearly independent, but the set {u, Au,v,w, Aw}, is necessarily linearly dependent,
being a set of 5 vectors in a 4-dimensional space. One dependence relation is

6Aw — 12w + Au— 4u = 0. (3)

(Standard basis vectors may always be used as seeds, not necessarily in turn; they
sometimes simplify testing linear independence.)
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Equation (3) cannot be put into the desired form (A — AI)x = o. But not to worry;
we can combine this equation with equations (1) and (2) to get what we need.
Equation (3) insists that A = 2. In fact, adding (1) to (3) produces

6Aw — 12w + A’u —4u= (A —2I)(6w + Au+2u) = o,
from which it follows that
6w + Au + 2u = 6(0,1,0,0) + (6, —2,2, —2) +2(0,1, —1,1) = (6,6,0,0)

is an eigenvector for 2. This eigenvector is linearly independent of the eigenvectors
obtained earlier because w occurs in it with nonzero coefficient and is outside the
subspace spanned by the others.

A mechanical way to find the right linear combination of equations (1), (2), and (3)
involves putting these equations in quotient-remainder form:

(A-2I)(Au+u)+2u=o,
(A-2I)(v+u) + o=o,
(A—-2I)(6w+u) —2u=o.

By choosing, if possible, a nontrivial linear combination of remainders that adds up to
o, the corresponding linear combination of these equations allows A —2I to be
factored out, and then the corresponding linear combination of quotients Au + u,
v+u, and 6w +u is an eigenvector for 2. Since 1-(—2u)+ o0 +1-(2u) = o, the
corresponding eigenvector is 1-(6w+u)+ o0+ 1-(Au+ u) = 6w + Au + 2u =
(6,6,0,0).

The computation is finished. Since the generated vectors span C*, there can be no
further seeds. The eigenspaces for the eigenvalues 0, 1, and 2 have respective
dimensions 1, 1, and 2. Hence no further independent eigenvectors are possible. (If
the remainder in equation (3) could not be eliminated, then there would be no
additional eigenvector for 2 and no basis for C* consisting of eigenvectors of A.
Section 3 shows how easy it is to complete a basis consisting of generalized eigenvec-
tors.)

The assertion made in the Introduction that the calculations take less than half a
sheet of paper is confirmed by the compact display below, followed by the short
calculation above for eigenvectors.

A u Au Alu v Av w Aw
3 -1 -6 1 0 6 6 0 -6 0o -1
-1 3 4 -1 1 -2 =2 0 4 1 3
1 -1 =2 1 -1 2 2 1 -2 0o -1
-1 1 4 1 1 -2 =2 0 4 0 1
0o -1 1

-2 1 -2 1

-4 1 0 —12 6

At the left is the matrix A. To the right of A are the vectors generated by the
algorithm, labeled on top. A vertical rule is drawn to the right of each vector linearly
dependent on those to its left. The numbers in the rth row under the generated
vectors are the coefficients of the vectors that occur in the rth dependence relation.
The relations are used to construct eigenvectors.
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A change from the standard basis for C* to {u, Au, v, w} (those generated vectors
that are not dependent on previous vectors) transforms the matrix A to Frobenius
form

0 0 4/6
1 1| -1|-1/6
0 0 2 0/
0 0 0 2

a block upper triangular matrix in which the diagonal blocks are companion matrices.
The rightmost columns of the diagonal blocks exhibit the coefficients in the depen-
dence relations (1), (2), and (3) divided by the negative of the coefficient of the vector
giving rise to the dependence relation. If the seeds for the Frobenius matrix are taken
to be the first, third, and fourth standard basis vectors for C*, then the dependence
relations are the same as those for A.

As is evident from the above procedure, the only places where explicit entries in the
matrix and vectors are used are in finding the dependence relations among the
generated vectors and in writing the eigenvectors explicitly. Otherwise, linear combi-
nations of the generated vectors are treated formally without regard to their values as
vectors in C*.

2. Description and justification of the method

Let A be an n X n matrix over an algebraically closed field F. The first phase of the
algorithm constructs a list of vectors called generated vectors, which span F", together
with a set of dependence relations among the vectors in the list in the following way.
The first vector in the list, called a seed, is any nonzero vector. Suppose that the first
k > 1 vectors constructed are v, . .., v;. If v, is not a linear combination of v, ...,v,_,,
then set v, ,; =Av,. If v is a linear combination of v,...,v,_;, then record one
such linear combination and set v, ,, equal to any vector not a linear combination of
Vi,...,Vi_1, also called a seed, provided such a vector exists. The algorithm must end
because the two cases can happen at most n times each.

The generated vectors linearly independent of previously generated vectors form a
basis for F" and are called independent generated vectors. The remaining vectors are
called dependent generated vectors.

As the first example shows, the algorithm uses vectors as they are and as they are
expressed as linear combinations of generated vectors. For example, the first eigenvec-
tor constructed in the first example arose first as the linear combination Au —u of
the generated vectors u, Au, A’u, v, Av, w, and Aw. It was then evaluated as the
vector (6, —3,3, —3). We will call a linear combination of generated vectors an
expression and the set of all such linear combinations E. The set E forms a vector
space under obvious rules for addition and scalar multiplication of expressions. A basis
for E is the set of generated vectors regarded as expressions and so the dimension of
E is n +m, where n is the number of independent generated vectors and m is the
number of dependent generated vectors regarded as expressions. The integer m is
also the number of dependence equations generated by the algorithm and the number
of seed vectors. The evaluation of an expression as a vector in F" is called the value of
the expression.

We need to distinguish several subsets of E. Expressions whose value is the zero
vector of F" are called null expressions. Expressions that are linear combinations of
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only independent generated vectors are called lean expressions. The lean expressions
form an n-dimensional subspace of E. The m dependence expressions constructed by
the algorithm are linearly independent because each has a dependent generated
vector with nonzero coefficient where all the others have that coefficient equal to
zero. Hence the subspace of all null expressions has dimension at least m. Since no
nonzero lean expression has the zero vector as its value, no nonzero lean expression
can equal a null expression. Hence the set of all null expressions has dimension
precisely m; so the dependence expressions form a basis for all null expressions.

Let g,,...,g, be the independent generated vectors regarded as expressions, and
let A be a scalar. Then the expressions (A —AI)g,, for i=1,...,n, are linearly
independent because each has a nonzero coefficient for a generated vector where all
others have a zero (i.e., the coefficient of Ag, in (A—AI)g, is 1, while the
corresponding coefficient in the other expressions is 0). Let s,,...,s,, be the seeds
regarded as expressions. Then {(A — AI)g,,...,(A—AD)g,,s,,...,s,} is a basis for
all expressions. Any nonzero linear combination of the (A — AI)g, has a nonzero
coefficient for some generated vector which is not a seed, whereas a nonzero linear
combination of seeds has that coefficient equal to zero. Hence every expression x can
be written uniquely in quotient-remainder form x=(A — AI)q+r, where r is a
linear combination of seeds regarded as an expression.

Every eigenvector for the eigenvalue A can be expressed uniquely as a linear
combination of independent generated vectors regarded as a lean expression x. Hence
(A — AIx can be regarded as an expression, indeed a null expression since the value
of x is an eigenvector. We need the fact that lean expressions are linearly independent
if and only if their multiples by A — AT are linearly independent. To that end, suppose
v is a nonzero lean expression. Let g, be the latest generated vector in v with nonzero
coefficient. Then (A — AI)v is an expression with the coefficient of g, , nonzero.
Now assume that vy, ... .V, are linearly independent lean expressions and that
Ya,(A — Al)v, is the zero expression, for some «;, not all zero. Then (A — AI)Xa,v,
is the zero expression and La,v, is a lean expression. Hence Ya,v, is the zero
expression, contradicting the fact the v, are linearly independent. Conversely, assume
that the expressions (A — Al)v;,...,(A — Al )vp are linearly independent expressions,
with the v, lean expressions. Suppose further that Xa,v; is the zero expression, with
not all of the a; equal to zero. Then (A — AI)Xav,=Xa,(A— Al)y, is the zero
expression, contradicting the assumption that the expressions (A — AI)v, are linearly
independent. Thus lean expressions are linearly independent if and only if their
multiples by A — AI are linearly independent. Therefore, to find a basis for the
eigenspace for A, it suffices to find a basis for the subspace of all null expressions of
the form (A — AI)z and then factor out the expressions z.

A basis for the subspace of all null expressions of the form (A — AI)z can be
constructed out of a basis for the space of all m-tuples (cy,...,c,) such that
Lt c;x; = o (the zero expression), where (A — Al)q; + 1, is the quotient-remainder
form of the dependence expression x;. This basis can be constructed exactly the same
way the dependence expressions were constructed, with the r; playing the role of the
generated vectors.

Letx, ,,...,x; be the basis for the null expressions of the form (A — AI)z and let
x;=(A—ADq,, for i=m+1,...,k, be their quotient-remainder forms. Then the
values of the expressions q;, form a basis for the eigenspace for A.

We have yet to address from where the eigenvalues come. They are the zeros of
certain polynomials derived from the dependence expressions. Let d be a dependence
expression and let s be the latest seed such that the generated vector A's has nonzero
coefficient in d, for some i. If all such generated vectors are taken together, they can
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be written in the form P(A)s, for some nonzero polynomial in F[x]. We show that
the roots of these polynomials, one polynomial for each dependence expression, are
the eigenvalues of A.

Let v be an eigenvector with eigenvalue A. Express v as a linear combination of
independent generated vectors and regard it as an expression. Then (A — AI)v is a
null expression. As such,

m

(A—-Al)v= Y ad,,
1

where the d; are the dependence expressions and the a; are scalars. Let p be the
largest integer such that @, # 0. Now each dependence expression d; involves with
nonzero coefficient only the first i seeds. Since (A — AI)v is a null expression, the
coefficients of all seeds in this expression are zero. Thus, since only the p-th
dependence expression can involve the p-th seed with nonzero coefficient, the
coefficient of the p-th seed in the dependence expression d,, must be zero. Hence
the polynomial associated with the p-th dependence expression must have the factor
A— AL

Conversely, if A is a root of one of the polynomials associated with the dependence
expressions, let p be the least index such that the polynomial associated with the p-th
dependence expression has A as a root. Then, for each i=1,...,p—1,d,=(A—
Alq; +r; (the quotient-remainder form), with each r,# o. Moreover, for each
i=1,...,p— 1, the remainder r; involves with nonzero coefficient the i-th seed but
no later seeds. Hence these p — 1 remainders are linearly independent and span the
subspace spanned by the first p — 1 seeds. Now, since the polynomial associated with
the p-th dependence expression has A as a root, its remainder r,, does not involve the
seed s, and so is an element of the subspace spanned by the seed expressions
$1,-..,S,_. Hence d, plus an appropriate linear combination of the first p —1
dependence expressions has quotient-remainder form with zero remainder; that is, d
plus some linear combination of the first p —1 dependence expressions is a null
expression whose quotient expression evaluates to a nonzero eigenvector for A.

3. Generalized eigenvectors and second example

DEFINITION. A generalized eigenvector of positive integer order q (for short, a
g-eigenvector) of the square matrix A for the scalar A is a vector x such that

(A=A 'x#0 but (A—Al)'x=o0.

In particular, a 1-eigenvector is an ordinary eigenvector. The generalized eigenspace
of order q (or g-eigenspace) of A for A consists of all vectors x such that (A — AI)7x
= 0. The generalized eigenspace for A is the union of the generalized eigenspaces of
all orders for A.

The algorithm for producing a basis for the generalized eigenspace for A extends
that described in the preceding section for eigenvectors. This time we look for
equations of the form (A — AI)z =y, where y is a generalized eigenvector, not just
the zero expression. The algorithm first constructs a basis for the 1-eigenspace as in
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the preceding section, then, using this basis, it constructs a basis for the 2-eigenspace,
and so on until a basis for the entire generalized eigenspace is constructed.

Let A be an eigenvalue of the n X n matrix A over the algebraically closed field F.
The construction builds a sequence x;, ..., x,,,X,,+1,-. -, X, of expressions as follows.
X, ...,X,, are the dependence expressions. As in the previous section, find a basis for
all linear combinations of x, ..., x,, which have the form (A — A I)z. Setx,,,,...,X;
equal to the quotients from this basis. These expressions, as vectors, form a basis for
the 1-eigenspace for A. The set {x,,...,x;} is linearly independent as expressions
because no nonzero lean expression can equal a null expression. Next, find a basis for
all linear combinations of the expressions {x, ..., x;} which have the form (A — AI)z.
This basis can be chosen so as to include the basis found above. Setx;,,,...,x, equal
to the additional quotients, if any, that occur. The expressions x,,...,x, are all
linearly independent because the dependence expressions are linearly independent,
the lean expressions which as vectors are generalized eigenvectors are linearly
independent, and no nonzero lean expression can equal a null expression.

Continue in this way until no new expressions result. Then the values of the
expressions X, .1, ...,x, form a basis for the generalized eigenspace for A.

Let’s illustrate this algorithm with an example. We begin with the display for a
7 X 7 matrix A.

A u Au A’u v Av  A%v w Aw Alw A’w
5 1 -28 1 =17 34 39 1 5 22 0 1 -110 1 6 11
1 6 —-29 -1 —45 66 61 0 1 6 1 6 25 10 -1 -2 =21
5 -2 =33 3 51 -32 -1 0 5 30 0 -2 =270 3 16 65
4 -2 -26 3 49 =37 -8 0 4 24 0 -2 =241 3 11 44
2 -1 =13 2 23 —-13 -2 0 2 12 0o -1 =12 1|0 2 10 39
-2 1 13 0 —-26 23 5 0o -2 -12 0 1 12 |0 0o -1 -9
6 -3 -39 3 71 =52 -9 0 6 36 0 -3 =310 3 16 69

8 -6 1

-8 3 8 -6 1

3 1 -10 5 -8 12 -6 1

The dependence expressions (see the bottom three rows of the display) are as follows:

x, =8u— 6Au + A’u,
X, =8u+ 3Au+8v—6Av+ A’v,

x;=3u+Au— 10v+5Av — 8w+ 12 Aw — 6 Aw + Aw.

The polynomials Py(t) =t>— 6t +8 = (t — 40t — 2), P,(t) =t>—6t+8=(t — 4t
—2), and Py(¢) =t*—6t% + 12t — 8 = (+ — 2)%, obtained from the coefficients of the
latest seed in each dependence expression, shows that the eigenvalues of A are 2 and
4. We treat the eigenvalue 4 first.

The quotient-remainder forms of the dependence expressions x; are as follows:

x;=(A—4I)( Au—2u) + o,
xo=(A—4I)( Av—2v + 3u) + 4u,
x,=(A—4I)( AW — 2 Aw + 4w + 5v + u) + 8w + 10v + Tu.

Since the first remainder is zero, the corresponding quotient q; = Au — 2u from x is,
as a vector, an eigenvector. The second remainder, r, = 4u, is not a linear combina-
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tion of the first remainder, so we skip to the next remainder ry = 8w + 10v + 7u. It is
not a linear combination of the first two remainders. We now have a basis for the
1-eigenspace for 4, namely, {q; = Au — 2u}, with q; as a vector.

Here is where the extension to generalized eigenvectors kicks in. Extend the list of
expressions x; by appending the expression x, = Au — 2u and compute its quotient
and remainder:

x,=Au—2u=(A—-4l)u+2u.

Now check whether this fourth remainder r, = 2u is a linear combination of the first
three remainders. It is: 2r, —r, = 0. The corresponding linear combination of x,,
namely 2x, — x, has the form (A — 41)z and lies in the 1-eigenspace for 4. Hence its
quotient 2q, — q,=2u—(Av—2v+3u)= —Av+2v—u, as a vector, is in the
2-eigenspace for 4. Now append the expression x; = —Av + 2v — u to the list and
compute its quotient q5 = —v and remainder r; = —2v — u. Test if this new remain-
der is a linear combination of the other remainders; it is not. Thus a basis for the
generalized eigenspace for the eigenvalue 4 has the two vectors x, = (3,1,5,4, 2, —2,6)
and x; =(2,4, -2, -2, —1,1, = 3).

For the eigenvalue 2 the computation is longer, because the generalized eigenspace
for 2 must have dimension 7 —2=>5. The computation is summarized in the table
below. To emphasize that the algorithm is the same for the eigenvalue 2 as it was for
the eigenvalue 4, we use the same notation.

The x; where from value quotient q;  remainder r;
X, =A’u—6Au+8u Au —4u o
X, =A% —6Av+8v+3Au—S8u Av —4v + 3u —2u
X3 =A,w—6A’w+12Aw—8w A w—4Aw+ 4w

+5Av — 10v + Au + 3u +5v+u 5u
Xy =q =Au—4u u —2u
X5 =2q;+5q, =2A’w—8Aw+ 8w

+5Av—10v + 17u 2 Aw — 4w + 5v 17u
Xg =q;—qy =—Av—4v+2u v —2v+2u
X =2q5+17q, =4Aw — 8w + 17Av — 58v + 51lu 4w + 17v —24v + 5lu
Xg =2q; — 24q4 + 27q, =8w + 27Av — 98v + 8lu 27v 8w — 44v + 8lu

The jth row of the table contains the constructed expressions x J» together with their
quotients and remainders on division by A —21I. Except for the first three rows,
which contain the dependence expressions, each x ; is accompanied by its derivation as
a linear combination of quotients. For example, since 2r; + 17r, = o, the combination
x; = 2q5 + 17q, is adjoined to the table. A horizontal rule separates the dependence
expressions from the expressions which evaluate to generalized eigenvectors and
further rules separate expressions which, as generalized eigenvectors, have different
orders.

The table shows that a basis for the generalized eigenspace for the eigenvalue 2
consists of two l-eigenvectors, x, =(1,1,5,4,2, —2,6) and x5 =1(2,4, =2, -2, -1,
1, —3); two 2-eigenvectors, xq=(3,2, =2, =2, —1,1, —3) and x,=(72,40, —22,
—30, —9,17, —39); and one 3-eigenvector xg = (108,64, —54, —46, —27,27, —81).
There are no further generalized eigenvectors for the eigenvalue 2 because the last
remainder rg is not a linear combination of earlier remainders; so the table cannot be
extended.
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4. Concluding remarks
Who killed determinants?—May [10]

In most developments of the eigenvalue problem, the characteristic polynomial of
the n X n matrix A is defined as det(tI — A) and used to obtain the eigenvalues of A,
which numbers were then used to obtain eigenvectors. Here the characteristic
polynomial plays no role. However, Cater [4] and Axler [1] show that the characteristic
polynomial can be defined without determinants, as I'T,(t — A)**, where the product
is extended over the distinct eigenvalues A of A and d(A) is the dimension of the
generalized eigenspace for A, which is equal to the dimension of the null space of
(A—-AD"™

The characteristic polynomial can, however, be obtained directly from the depen-
dence relations without first finding the eigenvalues. Except for a nonzero scalar
factor to make it monic, it is the product of the polynomials P.(t) introduced at the
end of Section 2. Details can be found in McWorter [11].
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Variations on a Theme of Newton
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Introduction

We use a particularly simple example function', and the computer algebra system
Maple, to try to learn something about Newton’s method. The discussion here
presumes only a minimal amount of calculus—including the standard introduction to
Newton’s method, such as is found in [2, Sec. 2.10]—and some algebraic fluency. This
discussion, though aimed at undergraduate students, contains surprises (perhaps even
for instructors), items not found in the usual calculus course, and pointers to many
more such items. The intention is to provoke or reinforce an interest in pure and
applied mathematics. If this works, everyone will take something new away.

Newton’s method

Newton’s method is for approximately solving nonlinear equations f(x) = 0. Applied
mathematics problems usually lead to nonlinear equations—we cannot rely on every-
thing being linear. Some examples of applied problems requiring Newton’s method or
an equivalent are:

* so-called “implicit” numerical methods for the solution of ordinary differential
equations.

e practically any engineering design problem, where instead of being asked to
calculate the behavior of a machine or system as given, you are asked to calculate
the design parameters that will make the system behave in a certain desired way.
For example, many problems in robotic control fall into this category.

* computer-aided design uses piecewise polynomials to model physical objects.
Calculating their intersection points requires the solution of systems of polyno-
mial equations. Even if initial approximations to the solutions are arrived at by
other means, Newton’s method can be used to “polish” the roots.

The basic idea behind Newton’s method is that if you can’t solve f(x)=0 for x,
replace f with a simpler function F, namely, the best linear approximation to f(x)
near some initial guess point x,. This approximation is F(x) = f(x,) + f'(x()(x —x,),
and we can solve F(x)=0 to get x, =x,—f(x,)/f (x,), provided f'(x,)+0.
Repeating this with the new approximation x; to get x, and so on gives us the
iterative formula

L f)
n+1l n f/(xn) .

'Our example function f(x) =12 — a is indeed particularly simple, and this is important: if it were not so
simple, we wouldn’t be able to go anywhere near as far as we do. Hold on to your seat!
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We will explore this formula with an extremely simple nonlinear function, namely
f(x)=x2—a, in order to learn something about Newton’s method (and some
computer tools). It is clear that the zeros of f(x)=x?—q are just x=Va and x =
— Va, so Newton’s method is not really required for this problem. Even worse, we
are later going to specify a =1, so we will be using Newton’s method to find the
square root of 1! Our iteration is, for general a,

2 _
X, —a

xn+1=xn_TE (1)

or, mathematically equivalent but slightly less numerically stable,

1 a
xn+1 =§ xn+x_ .

n

A Maple program The following program, written in the computer algebra language
Maple (see [1], for example, for an accelerated introduction to Maple), will be used to
compute iterates of Newton’s method for the rest of this discussion. The routine
normal just simplifies expressions.

Newton := proc(a, x0, n) local xn;
xn := x0;
to n do
xn := normal(xn— (xn "2 —a)/ (2*xn))
od
end:

Numerical tests If we choose a =2, then our function is f(x) =x*— 2 and we are
looking for V2. Choosing an initial guess of x, = 1, the program Newton produces
Table 1.

TABLE 1 Newton iterates of f(x)=x%—2,

n X, error

0 1 -1.0

1 3/2 2.5-1071
2 17/12 6.0-1073
3 577,408 6.0-1076
4 665857 /470832 45-10712
5 886731088897 /627013566048 25-107%

REMARKS

1. The error reported in the above table is the so-called “residual” error r, = f(x,,).
If r, is zero, then of course x, is a root; if r, is “small,” then, in some sense, x,
is “close” to a root. This type of measure of accuracy is always available, even
when the exact answer is not known. For “well-conditioned” problems it gives
the same information as the difference between the approximate answer and the
true answer; this problem is well-conditioned because x, — Va = (x2 —a) /(x, +
Va) =, /(2Va) and so the relative error here (a = 2) is about (x, — Va ) /Va =

r,/4.

2. Exact arithmetic costs a lot. We notice that the length of the answer approxi-
mately doubles each time; a quick calculation shows that the answer after 30
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iterations would take a few gigabytes of memory to store. This is why people
instead use arithmetic with a fixed number of decimals (i.e., floating-point).

. We can simplify our problem by the nondimensionalization® u, =x,/Va, at

least for the purpose of understanding what is happening. Of course, for actual
calculations we can’t nondimensionalize by Va which we don’t know. If we use
this conceptual scaling, then the Newton iteration becomes

1 1
Uppr = g | Uy T ML

This is exactly the same iteration but with @ = 1. Thus the scaled iteration uses
Newton’s method to compute the square root of 1. But the relative error in «x,, is
(x, —Va)/Va =u, — 1 and so this iteration really does tell us something about
Newton’s method, and we will keep it in mind. It is easy to see that if
u, =1+e, where e, represents the error after n iterations, then

92

e,

€ht1 = 2(1"'6")

—
o

=5,

This is called quadratic convergence. Using this formula shows that after about
30 iterations we will have about 1 billion digits of Va correct, if we start with
roughly one correct digit.

. If we convert these rational numbers to “continued fraction form” (using the

Maple routine convert (17/12, confrac)) where a continued fraction is
something of the form

1
ng + 1
ny + 1
Ng + —
we see the quite remarkable patterns
1=1
1
3/2=1+ 5
1
17/12=1+ .
2+ 1
2+ 3
1
577/408 = 1 + -
2+ I
L+ :

where the length of the continued fraction is 2", and every entry is 2. This is the
beginning of an interesting foray into number theory.

2 . . .
If @ has units, say square meters, this scaling removes them.
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Symbolic initial guess If the program Newton given earlier had been written in C
or FORTRAN, then calling it with a symbol (say g) for the initial guess would generate
an error message. But here,

> Newton(l, g, 1);

in Maple, returns (g* + 1) /(2g). We can ask Maple to continue, giving the results in
Table 2.

TABLE 2 Newton iterates for x2 — 1
with a symbolic initial guess, g.

n X,
0 g
g2+1
1
2g
9 l§4+252+1
4 g(g*+1)

1g%+28g°+70g* +28g° +1
8 g(g'+6g”+1)(g°+1)

[o¥]

In Ficure 1 we plot the first few results from Newton. We see that these rational
functions are trying to approximate a step function; as n increases, we see clear
evidence that these functions converge. The moral of this section is that the error
message that FORTRAN would have given us would have concealed an insight, namely
that the result of n iterations of Newton’s method is a rational function of the initial
guess g. Further, we have learned that this rational function looks (for large n) rather
like a step function with heights + Va . Note that the graph in Ficure 1 works for all «
because the axes are scaled—the horizontal axis is the g/Va axis and the vertical axis
is the x, /Va axis.

1.5F k
1 \\

0.5F k

Xn
=)

—0.5¢ g

-1 \\ i
-15 J
-2 L L L n
-0 -8 -6 -4 -2 0 2 4 6 8 10

FIGURE 1
Newton iterates with a symbolic initial guess, plotted together. As n increases we must have
x,/vVa = +1, and we can see that the convergence is rapid near g/ Va = +1, as we expect.


http://www.jstor.org/page/info/about/policies/terms.jsp

38 MATHEMATICS MAGAZINE

Symbolic ¢ Now let us choose instead x, =1 (we will discuss this choice of initial
guess in a moment) and look at the results from Maple if we input a symbolic a to the
program. The first few of these are presented in Table 3.

TABLE 3 Rational approximations obtained by using a symbolic a.

n X,
0 1
1 1
1 §'+§(l
9 11+6a+a’
4 1+a

1 1+28a+ 704> +284° + a*
8 (1+6a+a*)(1+a)

When we plot these®, we get a sequence of rational (in @) approximations to Va, as
is quite evident in Ficure 2.

!
|

o 1 2 3 4 s 6 7 8 9 10
a
FIGURE 2
The first few iterates of Newton’s method on f(x) =x%—a with symbolic a give quite good
rational approximations to Va.

REMARKS

1. Nondimensionalization shows that choosing x,=1 is perfectly general. Put
x, =y, in equation 1, and simplify to get

a/xg)

*Both FIGURE 1 and FIGURE 2 were actually prepared using Matlab, not Maple, because Matlab plots
look slightly nicer; moreover, the graphs were generated by giving a vector of g values and a vector of a
values to a Matlab implementation of Newton’s method, much like the Maple symbolic version.
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This is just the iteration for finding the square root of a/x;. Therefore, the
graph in Ficure 2 differs from the graph of the approximations we would get
with some other initial guess (say x,=2) only in the scale of the axes—in
particular the shape of the curves remains the same. If we label the y-axis with
x, where 1 is now, and likewise 2 x, for 2 and so on, and label the x-axis with x7
where 1 is now, etc., then Ficure 2 represents the first few iterates of the general
case. That is, all the curves with general initial guess collapse onto the same
curve. This shows the true power of nondimensionalization.

2. We can replace normal in the routine Newton with a call to Maple’s series
command, and execute Newton’s method in the domain of power series.
Quadratic convergence in this domain means that the number of correct terms
in the power series doubles each time.

3. We can show with Maple that the error in our rational functions of a above are
proportional to (a — 1)*'; for example, after three iterations the error is

a2—a=—1- (0_1)8
fala) 64 (1+6a+a2)°(1+a)

As before the difference between fy(a) and Va will be about 1/(2Va) times
this.

4. We can convert the rational approximations in Table 3 to continued fraction
form; indeed these approximations are one step towards approximation theory
which underlies much of scientific computing.

5. Again FORTRAN would give us an error message if we tried this in that language.
We begin to suspect that whenever a language gives us an error message, there
is something to learn.

Chaotic dynamics

Now we choose a = —1 and see what happens. We are trying to find an x such that
x24+1=0, and if we start with a real x, we are doomed to failure. However, the
failure is very interesting.

A few experiments show us that some initial guesses (x, =0, 1o =1, x5 =1—V2,
etc.) lead to division by zero. We ignore these minor annoyances. A few more
experiments show that most initial guesses don’t lead (immediately) to division by
zero, but rather wander all over the x-axis, without showing any kind of pattern.

Since the x, appear random in this case, we consider looking at a frequency
distribution of them. We divide the axis up into bins—the bins are chosen according
to a rule given by an advanced theory, namely a rule depending on the theoretical
probability density function—and count the number of «x, that appear in each bin.
The results appear in Table 4.

To explain the theoretical probability density function would take us to the
boundaries of ergodic theory, which is a “main artery,” if you will, of statistical
mechanics, dynamical systems, and indeed probability theory.

Symbolic n If we call the Maple program not with symbolic @ or x, but rather with
symbolic n, the number of iterations, we get the error message

Error, (in Newton) unable to execute for loop.
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TABLE 4 Frequency distribution for x, where x,,,=(x, —1/x,)/2
and x,=0.4 (10,000 iterates). The bin boundaries b;, 0 <k <10 are
chosen so that by = —w and [+ 1/(w(x*+ 1)) dx = 1/10. According to
theory, there should be roughly the same number of x, in each bin.

number of x,,

k bk in (bk—bbk)
1 -3.0777 1001
2 —1.3764 999
3 —0.7265 1006
4 —0.3249 1000
5 0.0000 986
6 0.3249 1000
7 0.7265 1007
8 1.3764 980
9 3.0777 986
10 o 1035

As we have discovered, an error message indicates that we have something to learn.
Maple might not be able to do this problem for a symbolic n, but we can (in this
case). Assume first that u, > 1 (this corresponds to x, > Va ). Put u, = coth 6,. (The
hyperbolic  functions sinh 6 = (exp(8) — exp(—0))/2, cosh 6 = (exp(0) +
exp(—6))/2, tanh 6 = sinh 6/cosh 6 and so on, are strongly related to the ordinary
trig functions.) We have

ho - _1(coshg, ~sinh§,
cothf, ,,=u, = § sinh Gn + cosh 0,,

cosh 26,
sinh 26,

coth28,

where we have used cosh? 8 + sinh? 8 = cosh 26 and 2sinh 6 cosh 6 = sinh 26 to sim-
plify. Taking coth™" of both sides, we see 6, ., = 286,, which is easily solved to get

6, =2",.

Therefore u, = coth(2"6,), if u,> 1.

For the case when 0 <u, <1, we note that we will immediately have u; = (u, +
1/uy)/2 > 1 (for example, by elementary calculus we see the minimum of u; occurs
when u, = 1). Thereafter the previous analysis applies. The case of u, <0 is symmet-
ric to the positive case. So we can say u, = coth 2"7'0,, regardless of what u, is.

Similarly, it is an elementary exercise to show in the complex case, with a = —1,
that u, = cot(6,) gives 6,,, =26, or

u, =cot(2",).

This lays bare all of the chaotic dynamics of this iteration in the complex case. See [3]
for more discussion of this case.

REMARKS

1. Now we have the solution for symbolic n, we can answer the question “What do
you get if you do half a Newton iteration®” For this problem, we get u;,, =
coth(v2 6,) (by definition). This doesn’t have any apparent application, but in
more complicated dynamical systems finding such an interpolation is very useful

indeed.
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2. The Lyapunov exponent in the chaotic case is In 2. The formula (3) also tells us
how to find the theoretical probability density function alluded to earlier.

3. No “fractals” appear in this problem, unless it is on the imaginary axis (where
the chaos is). However, looking at Newton’s method for solving f(x) =x%—1=
0, we get fractals in C immediately. See [3], and the other papers in that same
issue of the College Mathematics Journal.

4. The “asymptotics” of coth2"8, tell us how quickly the iterates approach 1. By
Maple,

u, =1+2e7 "0 +2¢7270 4 0(e7*2'%)

which tells us everything about how fast «, approaches 1 (and by extension how

fast x, approaches Va ).

Concluding remarks

In this discussion we have stepped outside the normal route to mathematics. By asking
just slightly different questions about Newton’s method than is usual in a calculus class
—using a very simple example, just trying to understand it better—we have used or
discovered links to nondimensionalization, numerical analysis, complexity theory,
continued fractions, approximation theory, series algebra, asymptotics, ergodic theory,
and dynamical systems (chaos and fractals). One hopes the student will be stimulated
to search out other references on these subjects (one might begin with the references
in [3], and the other papers in that same issue of the College Mathematics Journal).

The discussion in this paper also suggests that it might have been premature to drop
Newton’s method (for computing the square root) from the high-school curriculum, as
it has been dropped in some districts, merely because calculators can compute square
roots with the press of a button. The important thing may not ever have been to
compute a square root, but rather to provide a nice introduction to Newton’s method,
from which “central trunk” we may move on to other significant areas of modern
mathematics.

Probably the most significant concept used in this discussion is nondimensionaliza-
tion. From a practical viewpoint, it is an invaluable tool in the management of large
numbers of variables; from the pure mathematical viewpoint it is an overture to the
theory of symmetry, itself a vigorous and powerful branch of modern mathematics.

But even just on its own, Newton’s method is an extremely important and
well-studied tool in applied mathematics, used every day for the solution of systems of
nonlinear equations. It is surprising how easy it is to find new questions to ask about
it.

Acknowledgment. Many of these ideas are due to Charles M. Patton, and I first heard them in his

workshop at the 4th International Conference on Technology in Education, in Portland, Oregon, 1991. This
paper also benefited from discussions with Peter Poole, David Jeffrey, and Bob Bryan.
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Differentiating Among Infinite Series

RICK KREMINSKI

Texas A &M University—Commerce
Commerce, TX 75429

Introduction Calculus students often spend a lot of time deciding whether or not a
series like £71/j%? converges. But relatively little time is spent investigating the
numerical values of such (convergent) series. Can’t we just use a computer, many
students wonder, and keep adding more and more terms until we “see” what the limit
is? For many (rapidly converging) series, this logic is, of course, essentially valid. But
there are also many series whose partial sums converge very slowly. For X7 1/;°/2, for
instance, the 6-digit accuracy we will get below from one of our estimation formulae
would be attained by a partial sum only after 160 billion terms were added. As a more
dramatic example, we will consider the excruciatingly slow convergence of
Y5 1/(j (In )*); not even the addition of 10'®® terms would match the five digits of
accuracy we will obtain by our first, most basic method. Using our formulae, we can
accurately estimate the values of such slowly convergent series, provided we have a
minute’s time and adequate computing power—a generic scientific calculator will do
just fine. Our formulae, moreover, are based almost completely on something calculus
students are familiar with ([1],[2], [3]):

PUER PR ) W

Many students are surprised to learn that (1), something useful in estimating deriva-
tives, can be used to estimate the value of certain series (including many alternating
series). In this note, we first deduce some series estimation formulae, then illustrate
their use in a few examples, and then find other formulae based on generalizations of
(1). Next, we give a brief discussion of error bounding. Finally, we include some
comments on approximating Euler’s y constant.

Derivation of some summation estimation formulae Consider a convergent
series of the form ¥ f(j), where we assume that f is continuous and integrable on
some interval of the form [m,). Let a; denote f(j) and let f denote an antiderivative
of f. Of course, f is only well-defined up to a constant (for instance, if we consider
L 1/j%, then f(j)=1/j* and F(j)= —1/j+ C). Now F'(j) =f(j) = a; is approxi-
mated by (1); setting h =1 and letting j be k + 1, k + 2, etc., we have

F(k+2) —F(k) = 2a;,,
F(k+3) —F(k+1 =2a;.,
F(k +4) —F(k+2) =20, ©)]
F(k +5) —F(k+3) =2a; 4
F(k +6) —F(k+4) =2a;,5

42
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Observe all the cancellation that occurs when we add the first p approximate
equations. The result is

F(k+p+1)+F(k+p) —F(k+1) —F(k) =2(a1 + @0+ +a14,).

Note that the left side is indeed well-defined, even though F is only defined up to a
constant. Taking the limit as p tends to infinity (which really amounts to adding up all
the approximate equations in (2)), we see that a quantity like F(0) 4+ F(%) remains on
the left hand side of the expression above. To avoid cluttering up our results, we agree
to choose the constant of integration in F so that F(e) = 0 (this is possible since f is
integrable). Therefore (2) ultimately yields

~F(k+1) = F(k) = 2( gy + an + s + ). (3)

Equation (3) provides us with a way to approximate the “tail” of the series L a;. Let S
denote X7 a; and s, denote the partial sum X, _; a;, so that S —sp =ay,1 + ;45 +
43+ +++ is the truncation error (or “tail”) when s, is taken as an estimate for S.

Rearranging (3) and dividing by 2 leads to our first summation formula:

=5 — F(k-l-l;-l-F(k)

K

; (4)

for F vanishing at .
Before supplying examples, we observe that a similar approximation method can be
obtained as follows. Using (1), but this time with h = 1/2 instead of h = 1, gives

Fk+3/2)—F(k +1/2) = a;.,

F(k +5/2) —F(k +3/2) ~a,,
F(k+7/2) —F(k +5/2) ~a,,
F(k+9/2) —F(k +17/2) ~ap,,

Again, we add these approximate equations and get almost complete cancellation on
the left hand side. Heuristically, F() — F(k + ) =S —s,; this gives our second
approximation formula: For F vanishing at o,

S=s,—F(k+1/2). (5)

Example. We estimate S=2X71 /jg. For simplicity, we’ll use k = 20; any reader
with a calculator can implement both (4) and (5). Then
sk=320=1+;11-+-é—+ +4—(1)0=1.596163... .
To avoid further use of ellipses in truncated numerical values, we’ll use “(ad)” to
denote “accurate to all digits displayed”; so s,, = 1.596163(ad). Now since f(j) = 1/j°,
we have F(j) = —1/j, so equation (4) yields

§ =5 — LTIy 64497976 (ad).

Similarly, (5) yields

-1

$=s0 = 5571/3

= 1.6449437 (ad).
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How good are these approximations? It is well known from Fourier series or
complex analysis (or by purely elementary means involving trigonometric identities, as
in [4]) that £71/j% = m%/6 = 1.64493406(ad). (We chose this series as our first
example because, for students, we can view the exercise as really trying to estimate
7r.) From the sum’s true value we find that the absolute error in our use of (4) with
k=20 is roughly 3.9 107%; the absolute error using k=20 in (5) is roughly
9.7 X 107%. (We shall see below that error analysis predicts that for a generic f, the
absolute error in (4) is expected to be about four times the absolute error in (5).) A
standard argument using the integral test (exercise!) indicates that for a partial sum of
S=2X71/j* to be within 9.7 X 107° of S, one would have to add over 100,000 terms.
Implementing (5), we achieved this accuracy with only 20 terms.

Generalizations using more accurate estimates of derivatives Since (1) con-
cerned first derivatives, we can ask whether other, more accurate estimates for the
first derivative also lead to summation schemes. (Later, we will generalize in a
different way, by considering numerical estimates for higher order derlvatlves instead
of the first derivative.)

Consider the following more accurate estimate for F'(k), analogous to (1) (for
further details, see either [6] or Section 4.2 of [5]).

—F(j+2h) +8F(j+ hl)zz SE(I=h) * F(j=2h) _ oy (6)

Letting h=1and j=k+1,k+2,..., we have

—F(k+3)+8F(k+2) —8F(k) +F(k— 1 = 12a;,,

—F(k +4) +8F(k + 3) —8F(k+1) +F(k) ~12a;,,

—F(k+5)+8F(k +4) —8F(k+2)+ F(k+1) = 12a;,4

—F(k +6) +8F(k +5) —8F(k+3) + F(k+2) =12a;,4
~F(k+T7)+8F(k + 6) —8F(k+4) + F(k+3) = 12a;,5

Adding the approximate equations and again choosing F to vanish at infinity leads
to

F(k+2) —TF(k+1) = TF(k) + F(k—1) = 12(a,,, + dpso + ).

or, equivalently,

F(k+2)—7F(k+1)—TF(k) + F(k—1)
S=s + 19 .

(7)
Applying (7) to £71/j* with k = 20 yields S = 1.64493384(ad); the absolute error is
roughly 2.2 X 107", To suggest how the error is affected as k increases, we observe
that with k=60, (7) yields S = 1.6449340658(ad), representing an absolute error of
roughly 9.9 X 107'°. Summing 60 terms and adding some correction terms achieves
an accuracy that a partial sum alone would achieve only after summing more than one
billion terms.

An alternating series estimate Let A denote the series L7(—1)/"'a; =a, —a, +
ag— ... and let A, denote the partial sum TH(=1)""a,. Assume the sequence (a,)
tends to zero. Let f denote a continuous function, vanishing at infinity, such that
f(j) = a;. (Interestingly, we no longer need f to be integrable on some interval of the
form [m ), even though this was crucial to the derivations of (4), (5), and (7).) Let F
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be an antiderivative of f. Begin with the system of approximate equations in (2), and
change the signs in every other equation:

F(k +2) —-F(k)= 2a;,,

—F(k+3) +F(k+1) = —2a;.,,

F(k+4) —F(k+2) = 2a;.,

—F(k +5) +F(k +3) = —2a;.,

Adding p of these approximate equations, where p is odd, gives F(k+p +1)—
F(k +p)+ F(k + 1) — F(k) on the left hand side. But by the mean value theorem
F(m+1)—F(m)=F'(¢,) for ¢, €[m, m + 1]. Since F' =f and f tends to zero at
infinity, F(k +p + 1) — F(k + p) must tend to zero as p gets large. Taking the limit
as p tends to infinity leaves F(k + 1) — F(k) = 2(aj | — Gp 4o + Qi3 — iy + ).
But this means that F(k + 1) — F(k) = 2(A — A,), provided k is even. Hence, for

even k,

A:Ak+F(k+1;—F(k).

(8)
Before implementing this approximation scheme, we will obtain a more accurate
summation scheme for alternating series using the more accurate estimate of F’,
discussed above. In the spirit of (7), we have

1284,

= —12a14,

n

— F(k+3)+8F(k+2) —8F(k)+ F(k—1)=
F(k+4) —8F(k +3) +8F(k+1)— F(k)
— F(k+5)+8F(k+4) ~8F(k+2)+ F(k+1)
F(k +6) —8F(k + 5) +8F(k +3) — F(k+2)
—F(k+7)+8F(k + 6) —8F(k+4) + F(k+3)

Once again, adding the approximate equations yields much cancellation, leaving
F(k_ 1) _9F(k) +9F(k+ ].) —F(k+2) = 12(0k+1 — Qi +(Zk+3 T A4y + "').

Hence we obtain, for even k,

F(k—1) —9F(k) +9F(k+1) — F(k+2)
2 :

A=A, + (9)

Example. The sum 1 —1/3+1/5—1/7 + - is exactly 7/4, or .7853981633(ad).
Here f(x)=1/(2x — 1), which is clearly not integrable (so an antiderivative F could
not be chosen to vanish at infinity). Nevertheless, (8) with k=20 yields S=
.785408(ad), for an error of approximately 1.0 X 107°. (The partial sums would not
have this accuracy until over 3000 terms were summed.) Similarly, (9) with k = 20
yields S = .7853981009(ad), for an absolute error of roughly 6.2 X 10~®; achieving
this accuracy with partial sums alone would require more than 4 million terms.

Generalizations using higher-order derivatives We use the following numerical
estimate for the second derivative of G:
G(k+h) —2G(k) + G(k—h)
hz

= a"(k). (10)

n

120145
— 124444
12a1.5
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One could motivate this to a calculus student as a double use of (1):
G(x+2H)—-G(x) G(x)—-G(x—2H)
G(x+H)-G(x—H) _ 2H B OH
2 H 2H
_G(x+2H) —2G(x) +G(x—2H)
- 4H?2 '

With H =h/2, (10) follows. (A less ad hoc derivation of (10), along with error term,
is given below, but it requires familiarity with Taylor series.)

Consider then a convergent series of the form ¥ f(k), where we assume f is
continuous and, once again, integrable on [m, %) for some m. As before, we denote
f(k) by a;. Since f is integrable, it has an antiderivative, F, vanishing at infinity. Now
let G be an antiderivative of F, and let b, = G(k). (Of course, G(k) is defined only
up to a constant.) Now G"(k) =f(k) = a; is approximated by (10), and, with h =1,
we have the following approximate identities:

G'(x)=

by —2byy +byis =apy
by _2bk+2 + bk+3 = Qtg
byis —2byi5 + bryy ST

biis =2biiy +hiys = agyy

Adding these infinitely many approximate equations, again we obtain almost complete
cancellation on the left side. (The terms of the form “b,,, —b,” indeed disappear.
Namely, b,,,; —b,, = G(m + 1) — G(m), which by the mean value theorem is G'(¢,,),
which in turn is F(§,); and this vanishes at infinity by hypothesis.) We obtain

by=by,y =ap, tay,,+ag.;+ -, providing yet another way to approximate the
“tail” of ¥ a;. This simplifies to b, — b, =S —s;, or
stk+bk_bk+1' (].].)

Comparing the methods To compare our methods we apply them to two sample
problems.

Problem 1. Find X71/j°? to 3 digits past the decimal point.

Solution. After fifteen or twenty seconds of furious computation, a programmable
calculator can conclude that the partial sum s, is 2.549145(ad). Unfortunately, as
an approximation to the infinite series, this is not even correct to 1 digit past the
decimal. In fact, to attain 3-digit accuracy by direct summation would require over 28
million terms. Using (11) with k=10 yields 2.612725(ad). The true value is
2.6123753(ad), so (11) led to an absolute error of approximately 3.5 X 10™*. With
k =20, (11) yields 2.612441(ad), (4) yields 2.612506(ad), (5) yields 2.612408(ad), and
(7) yields 2.6123747(ad). (We have underlined various portions of the values for ease
in comparison.)

Problem 2. Find T3 1/j(In(}))?, to 4 digits past the decimal point.

Solution. Direct summation will not achieve this accuracy until more than 10'°%
terms have been added; this is a very slowly convergent series. (At this point in class
we observe that there are considerably fewer than 10'° quarks and neutrinos, i.e.,
fewer than 10'® “things,” in the observable universe.) The true value is
2.109742801(ad). Using (11) with k = 30 yields 2.109754(ad), (5) yields 2.109748(ad),
(4) yields 2.109767(ad), and (7) yields 2.1097427(ad).


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 1, FEBRUARY 1998 47

Error bounding We now develop an error bound for (4), and leave as exercises the
analogous derivations of error bounds for our other formulae. Beyond standard ideas
from calculus, we require only the (Lagrange form of the) Taylor series error formula,
which can be found in almost any calculus text (see, e.g., [2] or [3]).

Assuming that F" exists, we have

F(j+h) = F(j) + ()b + Tne + T8 s (12)

and

F(j=h)=F(j) —F(j)h+ (13)

where ¢, €[j,j+h] and &, €[j—h, j]. Subtracting equation (13) from (12) and
dividing by 2h yields

F(j+h)—F(j—F F" h®+F" /
(.] 1)2h (] 1) =F/(j)+ (61) 7’312}1 (52)1 (14)

(Note in passing that if we instead add the equations, we essentially arrive at (10), but
now with a precise expression for the error incurred in its use.) Since derivatives
satisfy the intermediate value property, the average of two F” values is another F”
value. Thus we can rewrite (14) as

F(j+h)2—hF(j—h) =F,(j)+fi(3§!_)hz.. (15)

" o+ F" ,
e gy

Therefore the error “true first derivative — estimate in (1) is —F”(&)h? /6. (We also
report, for future reference, that the analogous error for (6) is +F®(£)h*/30. For
details, see Section 4.1 of [5].)
Now we apply (15), our formula for the error in using (1), to each of the
appro*amate equations in (2). We can replace each ° by “=7, provided that
2F"(§&,)/6 is attached to the left side of the m'" equatlon here ¢, €[k+m—1,k
+m + 1]. Then the error in using (4) can be expressed as

S—(sk F(k+1)+F(k ) é

(16)

Before simplifying (16), we make two remarks.

* From (16) alone, we see that if f” >0 on [k, %) (as when f(j)=1/j? for p > 1)
the error is negative, so the approximations all exceed S. Furthermore, we see
that as k increases, the estimates from (4) approach S monotonically from above.
(And whenever f® >0 on [k,), the error formula for (6) that we mentioned
above implies that as k increases, the estimates from (7) should approach S
monotonically from below.) For examples illustrating these phenomena, look back
to any of the series where (4) or (7) were implemented.

* Had we kept the dependence on h, (16) would have a factor of h* on the right
side. This explains why (4) and (5) had errors differing by a factor of about four in
the numerical example on page 44, we used h =1 in arriving at (4), but used
h=1/2 in deriving (5). (Of course, the error in using (4) will not be precisely
four times the error in (5), and will depend somewhat on f; the ¢’s arising in (16)
will in general not be the same as those arising in the analogous sum for the error

in (5).)
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We now sketch how one could bound the sum in (16). (A similar discussion, but
with more details, appears in [7].) Consider the sum in (16) as two Riemann sums,
one for [; " /12 and the other for [, f”/12. (Two Riemann sums arise naturally,
with rectangle width 2, one sum for m even and the other for m odd.) For situations
where f” is positive and decreases, as in X7 1/j” for p > 1, the two Riemann sums
are less than right sums for the integrals [, f"/12 and [, f"/12 respectively.
These integrals are readily evaluated, and we conclude that one (crude) bound for the
error in using (4) is

ls_ (Sk_ F(k+ 1;+F(k) )ls‘f'(k —2)1+2f’(k —-1)

for the situation where f” is positive and decreasing on the interval [k — 2, ). This
bound can be improved; for one approach, see how the analogous error term in [7] is
treated. We leave bounds for (5), (7), (8), (9), and (11) as exercises for the reader.

The key to our estimation formulae is that both (1) and (6) express F' in terms of a
weighted sum of F-values at a finite number of equally spaced points. The error
bounding of (4) that we just completed provides hints for the general case. Omitting
details, if the error in the approximation for F’ is proportional to F"), then the error
in the associated summation formula will essentially be proportional to f"~ (k).
From the usual point of view in numerical analysis, one differentiation approximation
method for F’ is often considered “better” than another if its error term depends on
a larger power of the stepsize h, since h is usually chosen to be a fixed number close
to zero. But from the viewpoint of developing summation approximations, one
differentiation method is “better” than another if its error depends on F" for a
larger value of m. In this case, the error in the associated summation formula is
proportional tof "~?, and for many slowly converging series, higher derivatives of f
tend to zero much more rapidly than lower order derivatives. In this sense (6) is a
better differentiation method than (1), since the respective errors depend on F® and
F®_ Still better differentiation methods can be obtained by applying Richardson
extrapolation to certain Taylor series expansions, as described in Chapter 4 of [5]; see-
also [6]. It is a routine matter to develop corresponding summation approximation
schemes for any of these better differentiation methods.

A final example: Euler’s constant Let 7, =1+ 3+ 5+ - + = —Inm. Euler’s
constant y is defined as lim,, 7y, Calculus methods can be used to show that y
exists and is less than 1. (See, e.g., [8].) The constant 7y arises, among other places, in
infinite product formulas in complex analysis, including in the I' function [9].
Computing its value from the definition is notoriously ineffective; 7o, =
0.60200738(ad), 7,990 = 0.57771558(ad) and (over 50 seconds later on a 120Mhz
Pentium, running Mathematica) y,gy9 = 0.57722066(ad). We will see that even this
last value is barely within 5Xx 107% of y. To apply our methods to speed the

convergence of the ,,, begin with
—(1+l+l+-~+l R S N .
Yotk = 2 3 k k+1 " k+2 k+p n(k+p).

Now consider (2) in the situation where a; = f(j) =1/j and F(j)=1Inj. Adding the
corresponding p approximate equations in (2) gives

In(k+p+1)+In(k+p) —In(k+1)—In(k) 1 N 1 ey 1
2 Tk+1 T k42 k+p-
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So, after some algebra,

k
l( ) P P
k+1 In(k+p+1 In(k +
YVo+k = Ve T Cz + (C ; ( )

Taking the limit as p — o yields

ln(—k )
k+1
Y= p+ —g—t. (17)

Using k =20 we get y= 0.57761230(ad). In fact, y= 0.57721566(ad); so while vy,
differs from vy already in the first digit past the decimal, our estimate is accurate to
within 0.0004.

We can do better. Using the approximate system that led to (5), the reader can
check that y= vy, +In(k) —In(k + 1/2). (Coincidentally, exactly the same approxi-
mation method was analyzed in [10]) For k=20, this method yields y=
0.57731477(ad), for an error of about 0.0001. This represents approximately one
fourth the error we obtained from using k =20 in (17), as we expect from earlier
discussion. Finally, using the system just prior to (7), we obtain

y= e+ (k) + In(k+2) =7l (k + 11)2—7ln(k) +In(k=1)

(18)

Using k = 20 in (18), we get y = 0.57721452(ad), with an error of about 10~°. Notice
how this estimates y more accurately than does ¥,4900 -

Final remarks The error bounds that our methods produce, of the form of a
constant times f"~?(k), are comparable to error bounds that occur in summation
estimation based on the Euler—Maclaurin summation formula (cited in [7]). Such
summation formulae require values of f’s derivative as well as f’s antiderivative in
producing their estimates of the sum—whereas our formulae only require knowledge
of f’s derivatives in error bounding (and not in the summation formulae themselves).
Still, it is likely that there is some underlying relation between our methods and
Euler-Maclaurin-based methods—if, in the latter, derivatives are replaced by finite
differences. The precise relation between the two approaches remains to be explored.

Bibliographic remarks Since this article is based on numerical differentiation, it
complements [7], where T f(j) is estimated using numerical integration. Readers who
wish to examine other, recently proposed, methods of accelerating the convergence of
series (and methods of estimating Euler’s y constant) might begin with the references
in [7]. The present approach also shares something with the methods in [11] and [12].
For another interesting approach to accelerating convergence of alternating series, see
[13]. In another direction, [14] discusses nonlinear methods of accelerating series
convergence; all the methods we have discussed have been linear in the terms a; of
the series.
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Uniqueness of the Decomposition
of Finite Abelian Groups:
A Simple Proof

F. S. CATER
Portland State University

Portland, OR 97207

We shall use additive notation for abelian groups. The order of a group G is denoted
|G| and the cyclic subgroup generated by ¢ € G is denoted (c). Let Z, denote the
additive group of integers modulo n.

Among the results included in many first courses in abstract algebra is the
Fundamental Theorem of Abelian Groups:

THEOREM 1. Let G be a finite abelian group. Then there exist cyclic groups P,
Py,..., P, of respective orders ml, Mg,...,m,> 1, such that m; divides m;_ for
j=2,...,rand G=P ®P,® - ®P.

There is a variety of proofs of Theorem 1; for example, see references [1], [2], [3],
[4], [6], and [7]. Actually, there is more to the Fundamental Theorem:

THEOREM 2. The integers r and m, my,..., m, in Theorem 1 are uniquely deter-
mined. That is, if it is also the case that G=Q,® Q,® - ® Q,, where the
Q are cyclic subgroups such that IQJI divides IQj | forj=2,... s, then r=s and

IPI—IQIfor] e


http://www.jstor.org/page/info/about/policies/terms.jsp

50 MATHEMATICS MAGAZINE
REFERENCES

1. J. Callahan and K. Hoffman, Calculus in Context, W. H. Freeman, New York, NY, 1995, pp. 116-117.

2. R. Ellis and D. Gulick, Calculus with Analytic Geometry, 5th edition, Harcourt Brace, New York, NY,
1994, p. 137,

3. E. Swokowski, M. Olinick, D. Pence, and J. Cole, Calculus, 6th edition, PWS-Kent, Boston, MA, 1994,
p. 172

4. 1. Papadimitriou, A simple proof of the formula £3_, k™2 = 72/6, Amer. Math. Monthly 80 (1973),
pp. 424-495.

5. R. Burden and J. Faires, Numerical Analysis, PWS-Kent, Boston, MA, 1989.

6. M. Abramowitz and 1. Stegun, eds., Handbook of Mathematical Functions, Dover, New York, NY,
1972, p. 914,

7. R. Kreminski, Using Simpson’s rule to approximate sums of infinite series, College Math. Journal 28
(1997), pp. 368376,

8. G. Strang, Calculus, Wellesley-Cambridge Press, Wellesley, MA, 1991, p. 381.

9. J. Conway, Functions of One Complex Variable, second ed., Springer-Verlag, New York, NY, 1978, pp.
176-178.

10. D. DeTemple, A quicker convergence to Euler’s constant, Amer. Math. Monthly 100 (1993),
pp. 468470,

11. G. M. Phillips, Gregory’s method for numerical integration, Amer. Math. Monthly 79 (1972),
pp. 270-274.

12. S. Libeskind, Summation of finite series—a unified approach, Two-Year College Math Journal 12
(1981), pp. 41-50.

13. J. Harper, Estimating the sum of alternating series, College Math. Journal 19 (1988), pp. 149-154.

14. D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and
Phys. 34 (1955), pp. 1-34.

Uniqueness of the Decomposition
of Finite Abelian Groups:
A Simple Proof

F. S. CATER
Portland State University

Portland, OR 97207

We shall use additive notation for abelian groups. The order of a group G is denoted
|G| and the cyclic subgroup generated by ¢ € G is denoted (c). Let Z, denote the
additive group of integers modulo n.

Among the results included in many first courses in abstract algebra is the
Fundamental Theorem of Abelian Groups:

THEOREM 1. Let G be a finite abelian group. Then there exist cyclic groups P,
Py,..., P, of respective orders ml, Mg,...,m,> 1, such that m; divides m;_ for
j=2,...,rand G=P ®P,® - ®P.
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Theorem 2 demonstrates, for example, that Z,, @ Z;@ Z, ® 7, and Z,, © Z &
Zy® Z, are not isomorphic, even though they have the same number of elements.
Likewise, Zy; ® Zy ® Z is not isomorphic to Zy; & Z,;.

Unfortunately, the proof—and sometimes even the statement—of Theorem 2 is
often omitted from first courses, because the usual proofs depend on developing a
great deal of machinery. The main purpose of this note is to provide a simple proof of
Theorem 2, one that depends only on results usually proved in a first course in
abstract algebra. Along the way, we prove some other useful facts about finite abelian
groups.

The key to proving Theorem 2 is the following theorem, which does not seem to be
included in most abstract algebra texts (see [5]).

THEOREM 3. Let H be a subgroup of a finite abelian group G. Let G =P, ® P,
® - ®P, and H=Q,® Qy, ® - ® Q, be the decompositions of G and H described
in Theorem 1. Then s < r and |Qj| divides |Pj| forj=12,...s.

Theorem 3 shows, for example, that the group Z, ® Z, ® Z,, cannot be isomorphic
to a subgroup of Z;®@Z, @ Z,® 7, ® Z,. Likewise the group Z,, ® Z,® Z,® Z,
cannot be isomorphic to a subgroup of Zy, ® Z,, ® Z, © 7, ® Z,.

The proof of Theorem 3 uses the following facts, whose proofs can be found in
most beginning abstract algebra texts (such as [1] and [9]).

Fact 1. Any subgroup of a cyclic group is a cyclic group.

Fact 2. Let C be a finite cyclic group, let n be a positive integer, and let
nC = {nglg € C}. Then nC is a subgroup of C; moreover, nC = (0) if and only if |C|
divides n.

Fact 3. If n divides the order of the cyclic group C, then C has a subgroup of
order n.

Fact 4. If Gy=G, ®G,® - ®G,, m is a positive integer, and mG, =

{mglg € G}, then mG,=(mG)) ® (nG,) ® -+ & (mG,).
We will eventually use Theorem 3 to prove Theorem 2.

Proof of Theorem 3. The proof is by contradiction. Either let there be an index j for
which Ile does not divide |Pj|, or let s > r.

Case 1. Let | be an index for which |Q ]| does not divide |P]|. We will define a
subgroup we will call G|, and make estimates of its order. From these estimates the
required contradiction will emerge. Put n=|P;|, and m =|nQ,l. Then m>1 by
Fact 2. Put G, = {x € nG|mx = 0}. Clearly, G, is a subgroup of G. The strategy is to
find two inequalities involving |G, | that lead to an inconsistency. Now

nG = (nP;) ® (nPy) ® -+ & (nP,),
by Fact 4. But nP, = (0) if j > ], by Fact 2. It follows that
nG = (nP;) ® (nPy) & -+ & (nP,_;). (1)
Let x be any element of G,. Say x =x; + x5 + *** +x,_; where x; €nP,. Then
0 =mx =mx, +mxy + - +mx;_,

and hence mx; =mx, = -+ =mx;_; =0 because the nP; form a direct sum. Thus
X €G, for j=1,2,...,] — 1. But x was arbitrary in G,, so

Gy c((nP)) NGy) @ ((nPy) NGy) @ - @ ((nP)_) NGy). (2)
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Moreover, (nP)) N G, is cyclic, by Fact 1. For a generator g of (nP) N G, we have
mg =0, so |(nPj) N G,| <m. From (2) we conclude that

|G| <m/™t. (3)

Each subgroup Q; (i=1,2,..., J) contains a subgroup T; isomorphic to Q; by
Fact 3. Thus nT; = nQ,. But [nQ;|=m, so m(nT;) = m(nQ;) = (0) by Fact 2, and so
each nT, C G,. Hence

(nT)) ® (nT,) ® - & (nT}) CG,. (4)
Each nT, has order m, so from (4) we deduce
|G| =m/. (5)

From (3) and (5) we deduce that m/ <m/ ™', which is inconsistent with the fact that
m > 1. This completes the proof of Case 1.

Case 2. Let r>s. The argument is like the proof for Case 1, but with J=r+1
and n = 1. We leave the rest to the reader. This completes the proof of Theorem 3.

Proof of Theorem 2. Put H =G in Theorem 3. Then r >s and |Q,| divides |P| for
j=12,...,s. If we reverse the roles of the two decompositions of G, we find that
s>r and that |P| divides |Q;] for i=1,2,...,r. Finally, r=s and IQj|=|le for
j=L1L2,... s

Remark. Observe that prime integers did not enter our arguments, although they do
enter the proof of Theorem 2 in most of our references.
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Swapping Hats: A Generalization
of Montmort’s Problem

GABRIELA R. SANCHIS

Elizabethtown College
Elizabethtown, PA 17022-2298

Montmort’s Matching Problem The following problem was first proposed by the
mathematician Pierre Rémond de Montmort [7] in Essay d’ Analyse sur les Jeux de
Hazard, his 1708 treatise on the analysis of games of chance:

Suppose you have a deck of N cards, numbered 1,2,3,..., N. After
shuffling, you draw one card at a time, without replacement, counting out
loud as each card is drawn: “1,2,3,...”. What is the probability that there
will be no coincidence, i.e., no drawing of a card bearing the number just
called out?

In Montmort’s version of the problem, the deck had 13 cards, so the game was
called Treize, French for thirteen. The game has also been called Rencontres
(Coincidences), or Montmort’s Matching Problem.

Montmort discusses a generalized version of this problem in his correspondence
with Nicholas Bernoulli (1687-1759) from 1710 to 1712; these letters are included in
the second edition of Montmort’s work on gaming [8]. In the generalization, N cards
are drawn from a deck of Ns cards; there are s cards bearing each number from 1 to
N. Again, one seeks the probability of at least one coincidence, for which Montmort
and Bernoulli find a formula.

Other mathematicians who have generalized and discussed this problem include
de Moivre [6], Euler [1], Lambert [4], Laplace [5], and Waring [11]. For a more
extensive account of the history of this problem, see [2, pp. 326-345] and [10].

Calculation of P,(N) Montmort’s Matching Problem is often posed in the follow-
ing more amusing form: N men, attending a banquet, check their hats. When each
man leaves he takes a hat at random. What is the probability that at least one man gets
his own hat?

If there are no such coincidences, the next best thing might be a two-way swap. So
one might ask for the likelihood of no matches but at least one swap, or the likelihood
of no matches and no swaps but at least one three-way swap. More generally, one is
interested in the probability that for any m from 1 to N, m is the size of the smallest
subset of N men who exchange hats among themselves.

We let P,(N) denote the probability that among N men, m is the size of the
smallest subset of men that swap hats. P,(N), then, is the probability of at least one
match, which is Montmort’s original problem. The usual way of calculating P/(N) is
to let E; be the event that the ith man gets his own hat back. Then we use the

inclusion-exclusion principle to calculate the probability of at least one match, as
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follows:
P(N)=P(U,E )—ZP(E)—EP(EE)
+‘<Z;kP(E,,EjEk)—~-~+(—1)N+1P(E1E2.‘.EN)
- O~ Z%Z%H)%
- - (2)(—%—”' B

The series converges to 1 —1/e =~ 0.63 as N tends to infinity.

Let us now calculate P,(N) for some small values of N. If N = 3, there are 3!=
ways of distributing the hats. In fact, the sample space is just S;, the group of
permutations of 3 elements. Let (ijk) indicate that the first man gets hat i, the

second hat j, and the third hat k. Then our sample space becomes S;=
{(123),(132),(213),(231),(312),(321)}. Then

P,(3) = P(at least one match) = P({(12 3),(132),(213),(321)}) =2/3

P,(3) = P(no matches but at least one swap) = P(#)) = 0

P4(3) = P(no matches, no swaps, but at least one 3-way swap)
=P({(231),(312))=1/3.

With four men and four hats, there are 4!=24 sample points. Let (i, iyi5i,)
represent the outcome where the jth man gets hat i, We know that the probability of
at least one match is

1

15 5
P1(4) =l—g+

1_15_5
FYY S

1
37 -
In how many ways can we distribute the four hats so that nobody gets his own, but at

least one pair of men swaps? Notice that if two men swap, the other two must also
swap (since no matches are allowed). Hence we want to count the number of ways of

dividing four men into two pairs. This is é(;) =3, 50 P,(4) = 23—4 = %
In any three-way swap, the fourth man gets his own hat back, so P4(4) = 0. The last

possibility is of a four-way swap; it has probability P,(4) =1— 3 — g = 7.
We now give a general formula for P, (N):

[N/mJ(_l)ls+1 m—1
TueorEMm 1. P (N)= ), O (1— Y Pi(N—mk)).
k=1 i=1

Proof. Let E,; , be the event where men i,,...,i, exchange hats among
themselves and no smaller subset of men exchange hats. Then, by the inclusion-exclu-
sion principle,

IN/m]

k
m(N) = Z ( 1) o ZP(E:H mlEf12<~fm2"' Eilk...imk)’
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where the second summation is taken over all possible choices of disjoint subsets
{ivg, i i, o i of {1,2,..., N}

For a specific choice of these subsets, let us calculate the probability that each
subset of men exchange hats among themselves and no smaller subset of these men
exchange hats among themselves. This means that the men in {i,;,...,,} exchange
hats in some cyehcal manner. There are (m — 1)! such cyclical permutations of each
subset {i,...,1,;}. For a specific choice, the probability of the chosen cyclical
permutations occurring among the members of the subsets, with no ]-way swaps
(j <m) occurring among the remaining N —mk men, is % N
(1 =X ' P(N — mk)).

Therefore

— mk +1

[N/m] . p 1 1 1
m(N)_ gl (_1) Z((Tn_l)‘) 'ﬁN—lN—mk-l-l

m—1

x|1- Y PI.(N—mk))
i=1

|. mJ m—
Nﬁ (- 1)"“2((m—1)')LM(1— T BN k)|,
i=1

where the second summation is over all possible choices of disjoint subsets
{ivg, o sipads e ligeson it of {1,2,..., N} The number of choices of such disjoint

subsets is
(N)(N—m)m(N—mk+m)i= N!
m m m k! ki(m) (N —mk)!

Therefore, finally,

. IN/m) k+1 N! 1! k
0= L Y v (Y

|N/m] +1 m—1
= X [ l)k (1— ZP,.(N—mk)).

T
k=1 k! i=1
This completes the proof. ]

The limiting value of P,(N) Next we find a general formula for the limit of
P,(N) as N tends to infinity. Recall that for m =1, this reduces to Montmort’s
problem, so that limy _,,P,(N)=1-1/e. Theorem 2, which gives a formula for
evaluating P, =limy _,P,(N), uses the following standard lemma of real analysis

(see, e.g., [9, pp. 73-74]:

LEMMA. Let {a;} and {b;} be sequences such that a, converges to a and Lby
converges absolutely and the sum is b. Let ¢; = Tk_obya,_;. Then lim ¢, = ab.

)
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THEOREM 2. Let P, =limy P, (N), m=1,2,3,..., N. Then P, exists, and

m

1 1
Pm =e k—e k. (l)

k=1 k=

—_

Proof. The proof is by complete induction on m. We know (1) is true for m = 1.

Now assume m > 1 and whenever i =1,...,m — 1 then P, exists and

1
Pi=e % —e k.

To show (1), we will first show that

m—1
p,=(1 —6_1/'")(1 - X Pi)‘ (2)
i=1

It is enough to show that for each value of r=0,1,2,...,m—1, P,(ng+r)
approaches (1 —e™"/")(1 =X 'P,) as g — . To tlns end fix and apply the

lemma with a, =1— X" 'P(mk +r) and b, = ( ‘k)l Then a=1-X"'P, and
b =e~ /" Therefore as q =,

q L m—1 m—1
Z "k‘ (l - ) Pi(1nq+r—mk)) —>e_1/’”(l— Y Pi).
m i=1

i=1

Now we have, as g — o,

q (_l)k+l m—1
P(mg+r)= ) *k——(l— hM P,(mq-l—r—mk))
ey mek! Pt
m—1 q (_l)k m—1
=1— ) P(mg+r)-— Y e T P,(mq+r—mk)),
i—1 i—o m'k! P

m—1 m—1
->1- ) Pi—e‘l/’”(l— Y Pi)
i=1

i=1
m—1
=(1_e—1/m)(1_ Z Pz)a
i=1

which proves (2).
By the induction hypothesis, we know that

m—1 m—1 i-1 J m=1
1 1 1
ZP,:Z(e Y- r)=1—e‘2r,
k=1 k=1 k=1
i=1 i=1
from which we obtain
m—1 m-1 m—1 m
1 1 1
Pm=(1—e_1/"’ (1— Z P) —(l—e_l/"‘)(e ET) = e~ k; l?—e_]_lf
i=1

This completes the proof. |


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 71, NO. 1, FEBRUARY 1998 57

We can now state our main result:

THEOREM 3. The probability that the size of the smallest subset of N men that
1

STk

exchange hats among themselves exceeds m approaches e as N - o,

Proof. Theorem 3 follows immediately from Theorem 2, since the probability in

m

Theorem 3 is simply 1 — X/ | P,. |

This result is not new. For instance, Kolchin [3] shows that if «, is the number of
cycles of length r in a random permutation of n elements, then

1 I
P(arl=k1,a,2=k2,...,ary=ks)=me " n+o(1)

as n — o, In particular,
11 1
Pla;=0,0,=0,...,a,=0)=e¢'"373" " “w+o(1),
from which Theorem 3 follows. The proof given by Kolchin uses sophisticated tools,
including local limit theorems in probability and integrals of complex-valued functions.

The proof given above is relatively elementary and illustrates the method of
inclusion-exclusion.
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What Can Be Learned From n < n!?

ANDREW LENARD
Indiana University
Bloomington, IN 47405

In his famous introduction to analysis, A Course of Pure Mathematics, the great
English mathematician G. H. Hardy at one point writes “This is almost obvious” in
the text, and then appends the following footnote:

There is a certain ambiguity in this phrase which the reader will do well
to notice. When one says ‘such and such a theorem is almost obvious’ one
may mean one or other of two things. One may mean it is difficult to
doubt the truth of the theorem, ‘the theorem is such as common sense
intuitively accepts,” as it accepts, for example, the truth of the propositions
2+ 2=4" or ‘the base angles of isosceles triangles are equal’. That a
theorem is ‘obvious” in this sense does not prove that it is true, since the
most confident of the intuitive judgments of common sense are often found
to be mistaken; and even if the theorem is true, the fact that it is also
‘obvious’ is no reason for not proving it, if a proof can be found. The object
of mathematics is to prove that certain premises imply certain conclusions;
and the fact that the conclusions may be as ‘obvious’ as the premises never
detracts from the necessity, and often not even from the interest of the
proof.

But sometimes (as for the example here) we mean by ‘this is almost
obvious’ something quite different from this. We mean ‘a moment’s
reflection should not only convince the reader of the truth of what is stated,
but should also suggest to him the general lines of a rigorous proof’. And
often, when a statement is ‘obvious’ in this sense, one may well omit the
proof, not because the proof is unnecessary, but because it is a waste of
time to state in detail what the reader can easily supply for himself.*

A good example to illustrate these remarks is the inequality n <2" (n =0,1,2,...).
It is “obvious,” indeed so much so that children often become aware of it at an early
age. And the common sense proof

n+1<2"+1<2"+2" =21

is an excellent textbook case for introducing the student to proof by induction. But
there is more to it than that. What is the meaning of the inequality? It is this: A finite
set has more subsets than elements. Why? Because if we assign to every element x of
the set S a subset of S, say A, in any manner whatsoever, there is still at least one
more subset of S that has not been so assigned. Namely, the subset

R={x€S:x2A)
has the property that R = A, is impossible for every element y in S. (Assuming it is

possible, just ask whether ¢ is an element of R or not!)

"Hardy credits his colleague and collaborator J. E. Littlewood for the substance of these observations.
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This beautiful proof of the “obvious” inequality n < 2" has the virtue that it works
for every set, not just for finite sets: The cardinal number of any set, finite or infinite,
is less than the cardinal number of the family of its subsets. Thus we see that—as
Hardy tells us—there is indeed interest in proving an “obvious” theorem. The
examination of such a proof may for instance, as in the present case, lead to a
significant generalization.

The purpose of this note is to examine from this point of view another obvious
inequality, namely n <n!(n =3,4,5,...). Yes, it too is obvious; and in both senses of
the Hardy-Littlewood remark. It is obvious in the second sense, and so we can trust
any reader who is so inclined to construct the easy induction proof. But again, there is
more depth here than meets the eye. The meaning of the inequality is this: A finite
set has more permutations than the number of its elements, provided only that it has
at least three elements. And in this formulation the immediate question arises whether
the theorem is also true for infinite sets. It is; and the proof follows. It is patterned
closely on the proof just given for n < 2". One cannot expect the present proof to be
quite as simple though, for somewhere the hypothesis that the set has at least three
elements must be used.

Let us assume then that S is a set (finite or infinite) with at least three elements.
Let 7 be any mapping of S into the set of permutations of S. The permutation of S
assigned by 7 to the element x of S shall be denoted 7, and ,(y) shall denote the
element of S into which . sends the element y.

Our aim is to exhibit a permutation o of S that is not in the range of 7. Once it is
shown that this can be done for a truly arbitrary 7, it becomes clear that it is
impossible to have a one-to-one correspondence between S, or any subset of S, and
the set of all permutations of S. Therefore the cardinal number of the set of
permutations of S is revealed as strictly larger than the cardinal number of the set S
itself.

An element x of S and the corresponding permutation 77, shall be called self-fixing
if m.(x) =x. We distinguish four mutually exclusive and exhaustive cases.

(1) There are no self-fixing elements in S.

(2) There is exactly one self-fixing element in S, and there is also a transposition2
not in the range of 7 that interchanges the unique self-fixing element with
some other element.

(3) There is exactly one self-fixing element in S, but every transposition that
interchanges this unique self-fixing element with some other element is in the
range of 7.

(4) The number of self-fixing elements in S is at least two.

In case (1), o may be chosen as the identity permutation. For then o (x)=x #
m(x) for all x in S. Thus o is not in the range of 7, as required.

In case (2), o may be chosen to be the transposition whose existence is assumed.

In case (3), let w be the unique self-fixing element of S. For any y #w in S, let 7,
denote the transposition interchanging w and y. By hypothesis, it is of the form .
for some z in S (depending on y). This z is certainly not w, for m,, fixes w but
7, does not. Therefore, since w is the only self-fixing element, = + m.(z)= 'ry(z). But
7, being the transposition specified, this shows that z =y. We conclude then that in
case (3) the range of 7 consists of one self-fixing permutation ,,, and otherwise only
of transpositions that interchange w with another element. Let now y and z be two

2Recall that a transposition is a permutation that interchanges two elements of S but fixes all the rest.
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elements of S, distinct and also distinct from w (remember that, by hypothesis, there
are such!l). Then the cyclic permutation o defined by

c(w)=z, o(x)=y. o(y)=w,

and fixing all other elements of S, neither has w as a fixed point nor is a transposition,
and so it is not of the form . for any x in S, as required.

Finally, in case (4) we may choose o to be any permutation whose set of fixed
elements is precisely the complement of the set of self-fixing elements of S. If x is a
self-fixing element of S then 7, (x) =x # o (x), and if x is not a self-fixing element of
S then 7 (x) #x = o (x). Thus o # . for all x in S, as required.

Acknowledgment. The author wishes to acknowledge that the ideas expressed in this note originated in
conversations with his friend, the late George J. Minty, at one time Professor of Mathematics at Indiana
University. The writer is also indebted to his colleague W.H. Wheeler for pointing out that, intuitive as it
may be, the statement that there exists a permutation that moves every point of a set, requires for its proof
the Axiom of Choice in case the set is infinite. What one must do in that case is to partition the set into two
subsets of equal cardinality with a one-to-one correspondence between them, and define the permutation as
the one that interchanges corresponding points. It is the existence of such a partitioning that depends on set
theory with the Axiom of Choice.

Math Bite: Why 2 + 2 Equals 2 X 2

When I was in grade school, I wondered why 2 + 2 =2 X 2. Later, I discovered that
2+2=2x2=22 Why?

Addition is a repeated application of the successor function, multiplication is
repeated addition, exponentiation is repeated multiplication. It is natural to define
recursively an operation (n), where a(1)b is the successor of a taken b times, and
where a{n)b is defined as repeated application of the operation {n — 1). Thus {1) is
addition, (2) is multiplication, and (3) is exponentiation. Because exponentiation is
neither commutative nor associative, we need the usual convention when n > 2: group
right. For example, a{n)3 = a{n — 1)(a{n — 1) a).

Now I know why 2+2=2X2. It is a special case of 2{n)2=2{m)2, for all
natural numbers m and n.

I wonder how we would want to define e{4)mw{(4)i?

—Rick Norwoobn
East TENNESSEE STATE UNIVERSITY
Jomnson Crty, TN 37614
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elements of S, distinct and also distinct from w (remember that, by hypothesis, there
are such!l). Then the cyclic permutation o defined by

c(w)=z, a(x)=y. o(y)=w,

and fixing all other elements of S, neither has w as a fixed point nor is a transposition,
and so it is not of the form a, for any x in S, as required.

Finally, in case (4) we may choose o to be any permutation whose set of fixed
elements is precisely the complement of the set of self-fixing elements of S. If x is a
self-fixing element of S then 7,(x) =x # o(x), and if x is not a self-fixing element of
S then 7, (x) #x = o(x). Thus o # m, for all x in S, as required.

Acknowledgment. The author wishes to acknowledge that the ideas expressed in this note originated in
conversations with his friend, the late George J. Minty, at one time Professor of Mathematics at Indiana
University. The writer is also indebted to his colleague W.H. Wheeler for pointing out that, intuitive as it
may be, the statement that there exists a permutation that moves every point of a set, requires for its proof
the Axiom of Choice in case the set is infinite. What one must do in that case is to partition the set into two
subsets of equal cardinality with a one-to-one correspondence between them, and define the permutation as
the one that interchanges corresponding points. It is the existence of such a partitioning that depends on set
theory with the Axiom of Choice.

Math Bite: Why 2 + 2 Equals 2 X 2

When I was in grade school, I wondered why 2 + 2 =2 X 2. Later, I discovered that
2+2=2x2=2% Why?

Addition is a repeated application of the successor function, multiplication is
repeated addition, exponentiation is repeated multiplication. It is natural to define
recursively an operation (n), where a{1>b is the successor of « taken b times, and
where a{n)b is defined as repeated application of the operation {(n — 1). Thus (1) is
addition, {2) is multiplication, and ¢3) is exponentiation. Because exponentiation is
neither commutative nor associative, we need the usual convention when n > 2: group
right. For example, a{n)3 = a{n — 1)(a{n — 1)a).

Now I know why 2+2=2X2. It is a special case of 2(n)2 = 2{m)2, for all
natural numbers m and n.

I wonder how we would want to define e{4)mw{4)i?

—Rick Norwoob
East TENNESSEE STATE UNIVERSITY
Jornson Crry, TN 37614
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When is ( xy + 1){ yz+ 1)( zx + 1) a Square?

KIRAN S. KEDLAYA
Princeton University
Princeton, NJ 08544

To cut the suspense, let’s start with the surprising answer to the title question.

Theorem. If x, y, z are positive integers, then (xy + 1 yz + 1(zx + 1) is a perfect
square if and only if xy + 1, yz + 1, and zx + 1 are dll perfect squares.

The purpose of this note is to prove this result using Fermat’s method of infinite
descent, to provide historical context, and to investigate (and eventually refute) a
possible generalization.

For t a positive integer, a P-set is a set of positive integers, the product of any two
distinct elements of which is ¢ less than a perfect square. (The positivity restriction is
sometimes relaxed, but we will impose it throughout.) Classical examples of P,-sets
include the Pygq-set {1,33,68, 105} found by Diophantos and the P;-set {1, 3,8, 120}
found by Fermat.

A sizable literature exists addressing the existence or nonexistence of P,-sets of
certain forms; some early examples are chronicled in [3, Chap. XIX, pp. 513-520]. A
little experimentation shows that P,-sets become nontrivial to construct when they
must have four or more elements; Euler found a general construction of four-element
P,-sets which includes Fermat’s example. Since this construction is essential for the
proof of the theorem, we state it as a lemma (following [5]).

Lemma. If {p,q,r} is a P,-set, then so is {p, q,r, s} for

S=p+q+r+2pqri2\/(pq+1)(qr+1)(rp+l), (1)

as long as s > 0. (Note that s is necessarily an integer.)

Proof. The values of s defined in (1) are the roots of the quadratic equation
P2+ q*+r>+s>—2(pg+pr+qr+ps+qs+rs) —4pgrs—4=0, (2)

which can be rewritten in the following ways:

(p+q—'r—s)2=4(pq+l)(rs+l)
(p+r—q—s)2=4(pr+ 1)(gs+1)
(p+s—q—r)2=4(qr+ I)(ps+1).

Since rs + 1 is an integer which is the quotient of two perfect squares, it is also a
square, as are ps + 1 and gs + 1 by the same argument. Thus {p, ¢, r, s} is a P,-set.

Not surprisingly, constructing five-element P,-sets is substantially harder. Euler
gave a general construction, and a number of additional examples are also known;
however, it is not known whether there exist infinitely many five-element P,-sets for
any particular values of ¢, or whether there exist any at all for ¢ = 1.

The first significant nonexistence result for P,-sets is due to Baker and Davenport
[1]; using Baker’s theory of linear forms in logarithms of algebraic numbers, they
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showed that Fermat's P -set {1,3,8} can only be extended by adding 120. Their
method was later refined by Grinstead [4] and Brown [2] and applied to other P,-sets.
An elementary approach to such questions is given by Kangasabapathy and Ponnudu-
rai [6] and by Mohanty and Ramasamy [8]; a systematic presentation and a more
complete bibliography appear in [7].

The above theorem does not directly apply to studying the existence or nonexis-
tence of P-sets, but it does give an interesting characterization of three-element
P,-sets; after the proof, we will see that this phenomenon is (almost) unique to the
case t = 1.

Proof of the Theorem. Suppose there exist triples p, g, r of positive integers (where
we might as well assume p < g <r) such that (pg + 1)gr + 1)(rp + 1) is a perfect
square, but not all of pg+1, gr+1, rp+1 are squares. Choose a triple that
minimizes p + ¢ + r, and define s as in (1) using the negative square root. We will
show that 0 <s <r and that (pg + 1X(gs + 1D)(sp + 1) is a square, but that not all of
pq + 1, gs+ 1, sp + 1 are squares, contradicting the minimality of p +¢q + r.

By the equivalent forms of (2), we know that

16( pg + 1)*(pr+1)(gs + 1)(gr+ 1)(ps + 1)
=(pg+ 1) (p+r—q—s)(p+s—q—r)°

is a perfect square; since (pg + 1X(gr + 1(rp + 1) is a square, so then is (pg + 1)(gs
+ 1X(sp + 1). Moreover, ps + 1 is a square if and only if gr+1 is a square, and
pr + 1 is a square if and only if gs + 1 is a square, so not all of pg+1, gs +1, sp +1
are squares.

We also have

(ptq—r—s)
rs+ 1 >0
4(pg+1)
and so s > —1/r. Note that r =1 implies (by our assumption that p <¢q <r) that

p =q =r =1, in which case (pg + 1)(gr + 1)(rp + 1) is not a square, a contradiction.
Hence r > 1 and so s > 0. Moreover, if s =0, then we have

2 2 2
Wpg+1)=(p+q=-r), 4gr+1)=(g+r=p), 4mp+1)=(r+p—q).
contradicting the assumption that not all of pg + 1, gr+ 1, and rp + 1 are squares.
Therefore s is a positive integer.

If s is the other root of (2) (which is to say, s" satisfies (1) using the positive square
root), then we have
ss'=p>+q*+r’—2pg—2pr—2qr—4
<r*=p(2r—p) —q(2r—q)
<r?.
Since s is the smaller of the two roots, s* < ss’ and so we conclude s < r, yielding the

desired contradiction. [ ]

Does an analogous characterization of P,-sets exist for ¢ > 1P In other words, is
(pg + t)gr +t)(rp +t) a square if and only if pg +t, gr +¢, rp + ¢ are all squares?
The proof above does not work in general; the natural analogue of (2) would be

t(p?+q>+r2+s*) —2t(pg +pr+qr+ps+qs+rs) —4pgrs —4t>=0, (3)
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whose equivalent forms are

4(pq+t)(m+t)=t(p+q—r—s)2

and so on, but two obstructions arise. If ¢ is not a perfect square, then {p, g, r} can be
a counterexample even if {p, g, s} is not. Even if ¢ is a perfect square, though, if
t > 4, we cannot ensure that s is an integer.

Neither obstruction arises for ¢ =4, and indeed the reader may check that the
natural analogue of the theorem holds in this case with essentially the same proof.
However, we will now show that this analogue does not hold for ¢ # 1,4.

We first construct a counterexample {p, g, r} where ¢ is not a perfect square. Put
p =1, g =a>—t, where q is not a perfect square (which certainly holds if ¢ < 2a + 1);
we shall find r such that r + ¢ = thb?, gr +t = tc*, which is equivalent to solving

cg—qb2=1—q.

Indeed, b =c =1 is a solution, but it yields += 0, which is not a positive integer.
Nonetheless it is useful! To produce a nontrivial solution, let (u, v) be a solution in
positive integers of the Pell equation

2 2
u—quv=1,

and put

(c+b\/§)=(l+\/c7)(u+v\/_q_).

Now r=t[(u + v)* — 1] yields a counterexample. For example, if t =a =q = 2, the
solution (3,2) of the Pell equation gives the set {p, ¢, r} ={1,2,48}.

On the other hand, if ¢ = d? for d > 2, we can write ¢ = a® — p2 for some positive
a,p, and a similar argument starting from the bogus counterexample p, p,r (r
arbitrary) yields an actual counterexample.

Acknowledgment. Thanks to George Berzsenyi for providing ideas for my entry in the 1992 Westinghouse
Science Talent Search, where the above result first appeared.
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Proof Without Words: A Generalization from Pythagoras

THEOREM. The sum of the areas of two squares, whose sides are the lengths of the
two diagonals of a parallelogram, is equal to the sum of the areas of four squares,
whose sides are its four sides.

Proof.

COROLLARY. Pythagoras’s theorem (when the parallelogram is a rectangle).

Nelsen [1] reproduces a famous proof that uses tessellation similarly.

REFERENCE
1. R. B. Nelsen, Proofs Without Words, Math. Assoc. of America, Washington, DC, 1993, p. 3.

—DAVID S. WISE
INDIANA UNIVERSITY
BLOOMINGTON, IN 47405-4101
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2+3+4=1+8
5+6+7+8+9=8+27

10+11+12+13+14+ 15+ 16 =27 + 64

Proof Without Words: Sums of Integers as Sums of Cubes

VOL. 71, NO. 1, FEBRUARY 1998

+(n+1)’=n*+(n+1)°

(n®+1) +(n>+2) + -

n?+1

—Rocer B. NELSEN
Lewis AND Crark COLLEGE

PortLanD, OR 97219
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PROBLEMS

GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by July 1, 1998.

1539. Proposed by Donald Knuth, Stanford University, Stanford, California.
Let p and g be positive numbers with p + ¢ =1, and suppose 0 < € <q. Prove

that
p pte q )q—e e
( p+ 6) (q —€ e

1540. Proposed by Michael Golomb, Purdue University, West Lafayette, Indiana.

(a) Show that x" + (x —1)" = (x 4+ 1)" has a unique non-zero real root r,.
(b) Show that r, increases monotonically.
(¢) Evaluate lim, _, ,r,/n.

1541. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Assume a, > 1 and define a,,, =1/a,+a; — 1 for n=1,2,3,... . Evaluate

. 1/n
hm Ian-i-l —a, .
n—w

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an
e-mail address.

66
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1542. Proposed by Jerrold W. Grossman and Barry Turett, Oakland University,
Rochester, Michigan.

Sam and Joe (names favored by the late Paul Erdss) play an infinite game on the
real number line. They start at distinct initial positions and alternate turns. At each
turn a player must move to some point strictly between the players’ current positions.
Being monotonic and bounded, the sequence of positions for each player converges. A
player wins the game if his limit is rational and loses if his limit is irrational.

(a) Show that Joe can force Sam to lose.

(b) Find a strategy by which Joe will win with probability 1 if Sam plays randomly
(i.e., at each turn, Sam chooses a point in the gap between the players,
independent of previous choices, based on the uniform distribution).

(c) Does the result in (a) hold if the winning set is an arbitrary set of measure zero?

(Obviously they can play cooperatively and end up with a win/win situation.
Furthermore, either player can unilaterally guarantee that the results for both players
are identical by forcing the gap between them to vanish.)

1543. Proposed by Michael Golomb, Purdue University, West Lafayette, Indiana.

Let S be a given n-dimensional simplex with centroid C. A hyperplane through C
divides the simplex into two regions, one or both of which are simplexes. Find the
extrema of the volumes of those regions which are simplexes.

Quickies

Answers to the Quickies are on page 73.

Q874. Proposed by Matt Baker, graduate student, University of California at
Berkeley, Berkeley, California.

Find all integer solutions to x® + 6y =2z + 3w>.
Q875. Proposed by Hoe Teck Wee, Lengkok Bahru, Singapore.

Given a list of 3n not necessarily distinct elements of a set S, determine necessary
and sufficient conditions under which these 3n elements can be divided into n triples,
none of which consist of three distinct elements.

Q876. Proposed by Mihaly Bencze, Bragov, Romania.
Let A and B be n Xn matrices with integer entries such that A +kB has an

inverse with integer entries for k =0,1,...,2n. What is the determinant of B?
Solutions
Subsets Whose Elements Sum to a Multiple of a Prime February 1997

1514. Proposed by Hoe Teck Wee, Lengkok Bahru, Singapore.

Let p be an odd prime and k be a natural number. Find the sum of the elements
of the subsets of {1,2,..., kp}, the sum of whose elements is divisible by p. (For
instance, when p =3 and k = 1, the relevant subsets are {1, 2}, {3}, and {1,2, 3}, and
the required sum is 12.)
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(This generalizes problem 6 of the 36th International Mathematical Olympiad, held
in July 1995.)

Solution by Lior Pachter, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts.

The sum of such elements is k(kp + D@*? + 2K(p — 1)) /4.

More generally, let N, ; denote the number of subsets of {1,2,..., kn}, the sum of
whose elements is divisible by n, and let S, , denote the sum of the elements of all
such subsets. We first show that

n, k

Z 2]»;1/(1 (d)

din
d odd

where ¢(d) is the number of positive integers that are at most d and relatively prime
to d. Our argument follows the derivation for k=1 found in R. P. Stanley,
Enumerative Combinatorics, vol. 1, p. 59. Consider the polynomial

P(x)=(1+x)(1+x?) - (1+xk) =Y a;x/.
j=0
Then a; counts the number of ways to express j as the sum of the elements of subsets
of {1,2,..., kn}. Let {:=¢®"'/". For any integer j, L.\, _; {"/ equals n if n divides j
and 0 othervmse Therefore, we have

n Z P({m)_ Zajn= n, k-

m=1 j=0

Setting d =n/(n,m), we have that {™ is a primitive dth root of unity. Setting
x = —1 in the identity

x([_ 1 =(x_ gm)(x_gbn)_”(x_ gdm)
yields

m amy ... dmy — 2 ifdis Odd:
(L+gmA+ o)1+ {0 if d is even.

Since there are ¢(d) values of m for which {™ is a primitive dth root of unity, we
obtain

l . nl Kn /d
>‘=FZ = Egl/ld,(d)
m=1 dln

d odd

Note that the sum of the elements of the set {1,2,..., kn} is kn(kn + 1) /2. For n
odd or k even, if the elements of a subset S of {1,2,..., kn} sum to a multiple of n, so
do the elements of {1,2,..., kn} — S. This pairing yields that the mean of the sum of
the elements of subsets summing to a multiple of n is kn(kn + 1) /4. This implies that

kn(kn +1 k(kn+1
Sn,k= ( 4 )Nn,k= ( 4 ) Z 2kn/n’¢(d)'
dln
d odd

The formula for n an odd prime p follows.

Also solved by Thomas Jager, Kee-Wai Lau (Hong Kong), Peter W. Lindstrom, and the proposer. There
were one incorrect solution and one incomplete solution.
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A 3-Dimensional Heron-Type Formula February 1997
1515. Proposed by Isaac Sofair, Fredericksburg, Virginia.

The edges of a parallelepiped emanating from one vertex are given by the vectors a,
b, and ¢, of lengths a, b, and ¢, respectively. If «, B, and vy are the angles between b
and ¢, ¢ and a, and a and b, respectively, and o= (a+ B+ y)/2, show that the
volume of the parallelepiped is

2abcy/sinasin( o — a)sin( o — B)sin(o— v) .

Solution by Reza Akhlaghi, Prestonsburg Community College, Prestonsburg, Ken-
tucky, and Fary Sami, Harford Community College, Bel Air, Maryland.

Without loss of generality, we may assume that a =ai,b=>b,i +b,j, andc=c,i +
¢y j + ¢;k. Furthermore, reflecting if necessary, we may assume that b, and c; are
positive. Since the angle between a and b is y, we get b, =b cosy and b, =D sinvy.
Similarly, ¢, = ¢ cos 8. From

bccosa=b-c¢ = bccosy cos B+ be, siny,

we obtain ¢, = c(cos a — cos B cosy)/siny and finally

2 2 )
3 \/l—cosa—cosB—cosy+2cosacosBcosy
cy=1c*—ci—c; =c .

sin y

The volume of the tetrahedron is given by

a 0 0
la-(bxc)|=|det| by Dby O ||=abye,

Cp Cy C3

= tle'\/l — cos’a — cos’B — cos?y + 2cos acos B cosy .

We must derive a trigonometric identity to complete the solution. Beginning with
the desired result and using well-known identities for products of sines and cosines of
sums, we have

4sinosin( o — a)sin( o — B)sin( o — vy)

+ B+ + 8- - +a-—
=(251na g ysina g y)(?.siny ;H_Bsiny g B)

= (cosy—cos(a+ B))(cos(a— B) —cosy)
= cosy(cos(@— B) + cos(a+ B)) —cos(a+ B)cos(a— ) — cos®y

= cosy(2cosa cos ) — (cos’a cos’B — sin’ sin’B) — cosy

2 2 2
=1 — cos@ — cosB — cos™y + 2cos « cos B cosy.

Comment. Can Minh reports that the problem of computing the volume of a
parallelepiped in terms of its sides and the angles between its sides appeared as
problem 27.11 in The Mathematical Spectrum 27:3 (1994 /5). The answer published
in 28:2 (1995/6) was the above expression involving cosines.

Also solved by Anchorage Math Solutions Group, Rich Bauer, ]. C. Binz (Switzerland), Mangalam R.

Gopal, S. A. Greenspan, John G. Heuver, Thomas Jager, Hengli Jiao, Murray S. Klamkin (Canada),
Victor Y. Kutsenok, Neela Lakshmanan, Ralph Mervill, Can A. Minh (graduate student), William A.
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Newcomb, P. E. Niiesch (Switzerland), Karel A. Post (the Netherlands), 1. A. Sakmar, Volkhard
Schindler (Germany), Michael Vowe (Switzerland), Peter Y. Woo, Robert L. Young, Paul . Zwier, and
the proposer.

A Sum Representing an Integral February 1997
1516. Proposed by David Doster, Choate Rosemary Hall, Wallingford, Connecticut.

Let S, = X}_,V4n® — k*. Find the unique value of ¢ for which lim,, _, (cn — S, /n)

exists, and evaluate the limit for this value of c.

Solution by William A. Newcomb, Walnut Creek, California.

The unique value of ¢ is V3 /2 + /3. In this case the limit equals 1 — V3 /2.

Let f(x)=V4—x%. If ¢ exists, then from the definition of the Riemann sum it
must satisfy
V3 7w
_" = = =Y .7
c=lm =% = lim ‘Z f(k/n) ff( ) di =5+ 3.
The value of the integral follows from substitution or from interpreting the integral as
the area of a triangle and a sector of a circle of radius 2. For this value of ¢, the mean
value theorems for integrals and derivatives imply that there exist {; and &, in the
interval ((k — 1) /n, k/n) such that

of 7 ) =y de=n [ TEOM) (k) i

k=1)/ 1)/n x—k/n
_  L08) =f(k/n) —f(k/n) ck/n R
Zk_k/” f(k 1)/n k/n) ds

== §f’( &) ’,{
Thus,

n

lim Y n f("/’ (F(x) —f(k/n)) dx

2R k=1
. ! 1I
= lim —gkgf(fk)r IRACL:

1 V3
=5 (f(O)-f(1))=1-%.

Alternatively, both limits are obtainable from the trapezoidal rule. For some { in
(0,1), we may write the trapezoidal rule in the form

lim (cn — S, /n)

3 X fCk/m) = [ 1) ds g (50 ~s0) = 08

Multiplication by n leads to the desired limit. Additional terms in this expansion are
obtainable from the Euler—Maclaurin summation formula.

Comment. Several readers pointed out that a more general derivation appears as
Problem 10 of G. Pélya and G. Szegd, Problems and Theorems in Analysis, vol. 1,
Springer, New York, 1976, p. 49.

Also solved by Robert A. Agnew, Reza Akhlaghi and Fary Sami, Anchorage Math Solutions Group,
Michael H. Andreoli, Michel Bataille (France), Rich Bauer, Paul Bracken (Canada), Hongwei Chen, John
Christopher, C. Coker, Charles Diminnie and Trey Smith and Roger Zarnowski, Daniele Donini (Italy),
Robert L. Doucette, Mordechai Falkowitz (Canada), Russell A. Gordon, Michael |. Hoffman and Richard
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Katz, Anne L. Hudson, Paul L. Irwin, Thomas Jager, Parviz Khalili, Peter W. Lindstrom, Kandasamy
Muthuvel, Karel A. Post (the Netherlands), Heinz-Jiirgen Seiffert (Germany), Nicholas C. Singer, Isaac
Sofair, Dave Trautman, West Chester University Calculus II Class (Angeline Cremins, Mark Lamplugh,
Kyung Lee, Wes Peoples, Craig Walter), Western Maryland College Problems Group, Yan-Loi Wong
(Singapore), Paul . Zwier, and the proposer. There were five incorrect solutions.

The Determinant of a Spiral February 1997

1517. Proposed by Charles Vanden Eynden, Illinois State University, Normal,
Illinois.

Let M, be the nXn matrix with entries the integers from 1 to n® spiraling
clockwise inwardly, starting in the first row and column. For example

1 2 3 4
|12 13 14 5
M=l 16 15 6
0 9 8 7

Evaluate the determinant of M,,.

Solution by G. R. Miller, King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia.

First observe that we get the same determinant if the clockwise spiraling of entries
starts in the last row and column, since a matrix of the first form is transformed into
one of the second by exchanging the pairs of rows and the pairs of columns indexed by
land n, 2 and n—1, 3 and n — 2, and so forth.

More generally, write

X x+1 x+n—2 x+n—1
x+4n—-5 x+4n—4 - x+5n—-7 x+n
Mn(x)= ' ’
x+3n—-3 x+3n—4 - x+2n—-1 x+2n-—2

and let A (x) denote the matrix formed by replacing the first row of M, (x) with a
row of ones. We seek det M, (1).

By subtracting x times the first row of A, (x) from each of its other rows, we see
that a,:=detA, is independent of x. Also, set m,(x):=detM,(x). For n>2,
adding the last row of M,(x) to its first row, we see that

m,(x)=(2x+3n—3)a,.

For n > 3, to get a recursion for a,, add the 2nd and the last rows of A, (0) to its first
row, obtaining

m—-7 Tm-—-7 -+ Tn—-7 3n-1

4n—5 4n—-4 -+ Bn-—T7 n
a, = det -

3n—-3 3n—4 -+ 2n—1 2n-—2

Using linearity of the determinant in its first row along with our initial observation, we

find that
a,=(Tn—Ta,+(—1)"(4n—6)m,_,(2n — 1)
=(Tn—T)a, +(—1)"(4n—6)(7n —8)a,_, .
Therefore, a, = (—1)""'(4n — 6)a,_, . Starting with a, = —1, it is easy to verify that
a,=(=1)"""29n"2(9p = 3)(2n = 5) -3 = (—=1)" P2 (2n = 3) 1 /(n — 2)1.


http://www.jstor.org/page/info/about/policies/terms.jsp

72 MATHEMATICS MAGAZINE

It follows immediately that m,(x)=(2x+ 3n—3)(—=D""D"2(@2n - 3)!/(n — 2)!
and that m, (1) = (= D" Y"2@n — 1)@2n — 3)! /(n — 2.

Also solved by Sue Ackermann (graduate student), Anchorage Math Solutions Group, Rich Bauer, J. C.
Binz (Switzerland), Darrah Chavey, John Chavez, John Christopher, C. Coker, Thelma W. Hedgepeth,
Parviz Khalili, Norman F. Lindquist, Nicholas C. Singer, Irving C. Tang, Western Maryland College
Problems Group, Michael Woltermann, Yan-Loi Wong (Singapore), and the proposer. There was one
z'ncomplete solution.

Spirals of Squares February 1997
1518. Proposed by Edward Kitchen, Santa Monica, California.

Let C, be the center of a square whose side-length is F,, n > 0, where (F,) is the
Fibonacci sequence 0,1,1,2,3,... . Place the squares side-by-side in a spiral as in the
diagram below. For n >0 join the midpoints of adjacent sides of each quadrangle
C,2C,.,C,sC,. (where C_, =C,; by convention). Prove that the resulting
pattern is another sequence of squares whose side-lengths are a constant multiple of
the Fibonacci sequence.

Composite of solutions due to J. C. Binz, University of Bern, Bern, Switzerland, and
the Editors.

Express the centers C, as complex numbers with C, = 0. By considering each of
the four possible remainders when 7 is divided by 4 as a separate case, it is easy to

verify that

1+
Cn+1 = Cn + Tz.in-‘—Q(Fn + Fn+1i)'

The midpoints of the adjacent sides of any quadrangle C,_, C,_, C,,, C,,, form a
parallelogram. Thus, to show they form a square, it suffices to show that
Cn-—l + Cn+2 _ Cn—2 + Cn-—l = Cn+1 + Cn—2 _ Cn-—2 + Cn—l
2 2 2 2 >

Cn+2_Cn—2 z,(Cn+1 —Cn—l )
3 .

or that
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Now
C,n+1 _Cn—l _ Cn+1 _Cn Cn _Cn-l
) — T3 tT 3
1+
= _4i[i“+2(Fn +Fn+li) +i“+1(Fn—1 +Fnl)]
1+4 , , —3+i‘“
=— """ (—F, +2Fi) = ——i""'F,.
Similarly,
C ‘7_Cn— Cn _Cn Cn_cn-— —3+i —3+i
= 2 = +22 + 2 * = 4 zin+2Fn+1 + 3;1 zin n—1
— _34+il'n+2F”.

The claim follows. In addition, the proof shows that new squares have sides of length
F,10 /4 and that the original orientation has been rotated counterclockwise by an
angle with tangent —1/3, or approximately 161.6 degrees.

Also solved by Neela Lakshmanan, Karel A. Post (the Netherlands), Volkhard Schindler (Germany),
Joel Schlosberg (student), Stephen Swiniarski, and the proposer.

Answers

Solutions to the Quickies on page 67.

A874. The only solution is x =y =z =w = 0. It clearly suffices to prove there are no
solutions with «, y, z,.w nonnegative and not all 0. Suppose otherwise, and let
(x,y,2,w)=(a,b,c,d)be asolution with a + b + ¢ + d minimal. Note that ¢* = 2¢*
(mod 3), and because 0 and 1 are the only squares modulo 3, we conclude that
a=c=0 (mod 3). Thus, @ =3m and ¢ =3n with m +n <a + ¢. (Otherwise, a =c¢
=0, implying V2b =d, hence b =d =0.) But then 3m2 + 2b%=6n2 + d2, so the
4-tuple (d, n, b, m) satisfies the original equation. However, d+n+b+m <a+b +
¢ + d, contradicting the minimality of @ +b + ¢ +d.

A875. Given s € S, let k; > 0 denote the number of times s appears in the list. The
condition is that not more than n of the k; are odd. To prove necessity of the
condition, consider a division into triples satisfying the hypothesis. Observe that if k
is odd, then there must exist some triple containing an odd number of s’s. However,
each triple includes exactly one element that occurs an odd number of times in the
triple. Since there are n triples, k, is odd for at most n distinct s. To prove
sufficiency, assume that k, is odd for at most n elements s € S. For each s with k
odd, begin a triple with one s in an empty group. Every s appears with even
multiplicity in the remainder of the list. Thus, we may form n pairs of identical
elements from these remaining elements. Place one pair in each of the n triples, thus
ensuring that no triple consists of three distinct elements. Finally, put one of the
remaining elements in each of those triples with only two elements.

A876. The determinant of A +xB is a polynomial in x of degree at most n, with
det B the coefficient of x". What is given implies that det(A +kB)= +1 for
k=0,1,...,2n. Thus, the polynomial det( A + xB) takes on the same value for n + 1
values of x, hence must be a constant. Therefore, det B = 0.


http://www.jstor.org/page/info/about/policies/terms.jsp

REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

1997-98: University of Augsburg,
Germany

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
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1997) 68-73.

Mauldin, R. Daniel, A generalization of Fermat’s Last Theorem: The Beal Conjecture and
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Darmon, H., and A. Granville, On the equations 2™ = F(z,y) and AzP + By? = cZ",
Bulletin of the London Mathematical Society 27 (1995) 513-543.

In 1908 physician Paul Wolfskehl established a prize for the proof of Fermat’s Last Theorem
(FLT), and Andrew Wiles received its $50,000 last year. With FLT resolved, what’s left to
do? Now a Texas banker, Andrew Beal, is offering max{$50,000, $5,000 x (Y — 1996)} for
the resolution in year Y of the more general Beal’s conjecture: The equation z™ +y™ = 2"
has no solutions with x,y,z coprime for integers m,n,r > 2. In other words, apart from
squares, no two powers of integers sum to another power, unless they have a common factor
(e.g., 22 +23 = 2% or 3°+6° = 3°). FLT is the special case m = n = r. In 1995 Darmon and
Granville showed that for fixed m,n,r, the equation has only finitely many solutions. (The
related ABC conjecture, discussed previousl§ in this column and also by Peterson, implies
that 1/p + 1/g+ 1/r > 1/2, hence that there are no solutions for exponents sufficiently
large.) Darmon and Granville also investigated related open problems and formulated what
they call the Fermat-Catalan conjecture: There are only finitely many solutions with x,y, z
coprime when 1/p+1/g+ 1/r < 1. Mauldin and Peterson give further references.

Babai, Laszl4, Carl Pomerance, and Péter Vértesi, The mathematics of Paul Erdés, Notices
of the American Mathematical Society 45 (January 1998) 19-31. Babai, Léaszl6, and Joel
Spencer, Paul Erdés (1913-1996), ibid. 64-73.

These commemorative articles offer an overview of Erd8s’s mathematical achievements and
an account of his life and unusual work- and lifestyle. In addition, a recent film about Erdds,
“N Is a Number—A Portrait of Paul Erdés” is available from the MAA, and more references
are at the Web page http://www.cs.uchicago.edu/groups/theory/erdos.html .
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Schulz, Andreas S., David B. Shmoys, and David P. Williamson, Approximation algorithms,
Proceedings of the National Academy of Sciences of the USA 94 (November 1997) 12734~
12735; also available at http://www.pnas.org/cgi/content/full/94/24/12734 .

This paper is a brief nontechnical survey by leading experts of recent progress in approx-
imation algorithms in the context of applications. An a-approzimation algorithm is one
that efficiently computes a solution whose value is within a factor o of optimal; we want
a to be as close to 1 as possible. Randomization is one technique for approximation algo-
rithms for NP-complete problems. The authors describe new randomized approaches that
solve the maximum cut problem with an expected cut weight of @ = 0.878 of optimal,
the routing problem in a communication network (minimizing congestion) with a =1+ ¢,
and the problem of efficiently drilling holes in circuit boards (with Euclidean metric) with
a=1+e

The 1997 Nobel Prize in Economics, http://www.nobel .se/announcement-97/economy1997.
html .

Ferreyra, Guillermo, The mathematics behind the 1997 Nobel Prize in Economics, http:
//www.ams.org/new-in-math/black-scholes-ito.html .

Rubashs, Kevin, A study of option pricing models, http://bradley.bradley.edu/%7Earr/
bsm/model.html .

Devlin, Keith, Devlin’s Angle: A Nobel formula, http://www.maa.org/devlin_11_97.
html .

The 1997 Nobel Prize in Economics was awarded to Robert C. Merton (Harvard) and Myron
S. Scholes (Stanford) “for a new method to determine the value of [financial] derivatives”
(such as stock options). That method involved the formulation of a model with appropriate
assumptions and solution of the resulting stochastic differential equation (a differential
equation whose solution is a stochastic process). The articles cited give a glimpse into the
situation modeled and into the mathematics used.

Hayes, Brian, Square knots, American Scientist 85 (November-December 1997) 506-510.

What if space were (is?) discrete—that is, topologically equivalent to Z* instead of to R3?
This article investigates what knot theory in such a space is like. For instance, there is
a smallest nontrivial knot, as measured by its length. Also, pursuing a three-dimensional
random walk that otherwise avoids intersecting itself until it returns to its starting point
produces a knot; the probability that this knot is the unknot tends to 0 as the number of
steps increases.

Devlin, Keith, Making the invisible visible, http://www.maa.org/features/invisible.
html .

“How do we set about rectifying the result of hundreds of years of bad press” for mathemat-
ics? So asks the former editor of MAA’s Focus newsletter in a commencement address last
spring. His answer, in all seriousness: “Sound bites ... the only way we have of changing
public opinion ... . I don’t think there is much of a case to be made in favor of trying to
[increase public understanding of mathematics]. What I want to change is the public per-
ception of mathematics.” He suggests two such sound bites: Mathematics is the science of
patterns, and Mathematics makes the invisible visible, and gives several examples to show
how each can encompass mathematics.
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NEWS AND LETTERS

Guidelines for Authors

The following Guidelines have been updated in several respects from their
earlier form, which appeared in the February 1996 issue of this MAG-
AZINE. For instance, these Guidelines address some aspects of elec-
tronic submission of manuscripts and figures. These Guidelines (and
additional information) are also available on the World Wide Web, at
http://www.maa.org/pubs/mathmag.html .

General information MATHEMATICS MAGAZINE is an expository journal of un-
dergraduate mathematics.

Both adjectives in the preceding sentence are important. Articles submitted to
the MAGAZINE should be written in a clear, lively, and inviting ezpository style.
The MAGAZINE is not a research journal, so papers written in the “theorem-proof-
corollary-remark” style are usually unsuitable for publication. The best contribu-
tions contain examples, applications, historical background, and illustrations.

Every article should contain interesting mathematics, readably presented. Orig-
inality and freshness of approach are essential. Original research results in pure
mathematics are, as a rule, outside our purview, although description and exposi-
tion on research results may be appropriate.

We especially welcome papers that include a historical element, and papers
that draw connections among various branches of the mathematical sciences, and
between mathematics and other disciplines. Papers with educational or pedagogical
content are welcome, and are held to the same high standards of mathematical
content, exposition, and general interest as are other submissions. Educationally-
focused papers that touch on other subjects, bring in history, or appeal to advanced
undergraduates are more likely to be accepted.

Audience The MAGAZINE is an undergraduate journal in the broad sense that
it addresses both teachers and students of collegiate mathematics. Among the
intended uses of the MAGAZINE is to supplement and enliven undergraduate math-
ematics courses, especially at the upper undergraduate level. Articles, therefore,
should be inviting and accessible to non-specialists, including well-prepared under-
graduates. To this end, references should be provided generously, since we aim to
invite readers to pursue ideas further. Bibliographies may contain suggested read-
ing along with sources actually used or cited. Whenever possible, references should
cite readily available sources, in their most recent editions.

What makes a good article? MATHEMATICS MAGAZINE is responsible first to
its readers (most of whom are mathematical generalists), and then to its authors. A
manuscript’s publishability depends, therefore, as much on its quality of exposition
as on its “pure” mathematical significance. Our general advice is simple: Say
something new in an appealing way, or say something old in a refreshing way. But
say it clearly and straightforwardly, assuming a minimum of technical background.
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Good exposition in our sense is vigorous and informal, written in the active voice,
and rich with helpful examples. Minimize computation; stress motivation, insight,
and illustration. Illustrate your ideas with visually appealing graphics, including
figures, diagrams, tables, drawings, and photographs.

First impressions are especially important. Titles should be short, descriptive,
and attractive. The opening sentences should clearly summarize the paper’s scope
and aims. A successful introduction should aim to enlarge rather the paper’s audi-
ence, rather than limit it to a few specialists.

Many useful references on good mathematical style and exposition are avail-
able; several are listed at the end of these notes. Some of these references may be
especially helpful for writers who use computer writing environments.

Types of papers Most papers in the MAGAZINE are published either as Articles
or as Notes. Articles have a broader scope than Notes, and usually run longer than
2000 words. Articles should be divided into a few subsections, each with a carefully
chosen subtitle. Typical Notes are shorter, more narrowly focused, and less formally
sectioned—a few paragraph headers should suffice. In addition to expository pieces,
we publish Proofs without Words, Math Bites, and (in very limited quantity) poems,
cartoons, and other mathematical miscellanea. See any issue of the MAGAZINE for
examples of these genres.

Style and format Manuscripts should be clearly typewritten or laser-printed,
with wide margins and line-spacing. The title, author, and author’s address should
appear at the top of the first page. Pages should be numbered.

References should be listed either alphabetically or in the order cited in the text;
in either case, consistency is essential. Please adhere very closely to the MAGAZINE’s
style for capitalization, use of italics, etc. See any issue (and the references below)
for examples. In particular, journal titles should be abbreviated as in Mathematical
Reviews.

Figures and illustrations Figures may be either interspersed with text or ap-
pended to the end of a paper. (If the paper is accepted, separate copies of all figures
must also be supplied, both with and without added lettering.) All figures should
be numbered, and must be referred to by number in the text. Authors themselves
are responsible for providing figures of publishable quality; the MAGAZINE has no
“art department.”

Submitting manuscripts As a rule, papers should be submitted to the MAGA-

ZINE in physical form. Please submit three copies; keep another copy as protection

against possible loss. Electronic submission is possible in limited circumstances,

but we cannot guarantee any response to electronic submissions in formats that are

obscure or unfamiliar to us. For details, contact mathmag@stolaf.edu.
Manuscripts and other correspondence should be mailed to

Paul Zorn, Editor, MATHEMATICS MAGAZINE, St. Olaf College, 1520
St. Olaf Avenue, Northfield, Minnesota 55057-1098.

Please include an e-mail address, if available.
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Our referees are asked to check for mathematical accuracy, but also to give
detailed suggestions on stylistic matters. In practice, almost all papers require
some revision before being accepted for publication. After acceptance, papers are
copy-edited in our office.

Electronic manuscripts Although original submissions will normally be in phys-
ical form, we appreciate receiving revisions and final versions in electronic form—
ideally, in some variant of TEX or *TEX, but any electronic form is better than none.
Figures, if supplied electronically, should be saved to PostScript or Encapsulated
PostScript (EPS) form.

Simple WTEX “template” files are available for Articles and Notes; they can be
had either by sending an e-mail request to mathmag@stolaf.edu or, via the Web,
at http://www.maa.org/pubs/mathmag.html . These templates produce rough
approximations to the appearance of Articles and Notes in the MAGAZINE.
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DIOPHANTUS AND
DIOPHANTINE
EQUATIONS

AL CHIGORTIVN BASMAMA SOV

I. G. Bashmakova

Most readers associate the mathematics of antiquity
with Euclid’s Elements and the works of Archimedes
and Apollonius. This wonderful little book will
introduce the reader to a new aspect of the mathe-
matics of antiquity in the works of Diophantus.

The object of this book is to present the work of
Diophantus, focusing on Diophantus’ methods of
obtaining rational solutions of indeterminate equa-
tions of the second and third order.

The first part of the book presents the elementary
facts of algebraic geometry essential to understand-
ing the rest of it. The book clears up the misconcep-
tion that Diophantus relied on clever tricks rather
than general methods to solve problems. Professor
Bashmakova shows that in modern theorems,
Diophantus used general methods to find rational
points on algebraic curves of genus 0 and 1.

The second half of the book considers the evolution
of the theory of Diophantine equations from the
Renaissance to the middle of the 20th century. In
particular, the book includes substantial descrip-
tions of the relevant contributions of Viéte, Fermat,
Euler, Jacobi, and Poincaré. The book ends with

Diophantus and
Diophantine Equations

Updated by Joseph H. Silverman
Translated by Abe Shenitzer

Series: Dolciani Mathematical Expositions

Joseph Silverman’s survey of Diophantine analysis
during the last twenty years in which he mentions
the proof of the Mordei conjecture and of Fermat's
Last Theorem.

The book is intended for a broad audience. It can be
enjoyed by teachers as well as students at all levels.

Table of Contents: Introduction; Diophantus;
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Evaluation of Diophantus’ methods by%istorians of
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Indeterminate cubic equations; Diophantus and
number theory; Diophantus and the mathematicians
of the 15th and 16th centuries; Diophantus’ meth-
ods in the works of Viete and Fermat, Diophantine
equations in the works of Euler and Jacobi; The geo-
metric meaning of the operation of addition of
points; The arithmetic of algebraic curves;
Conclusion; Supplement: The role of concrete num-
bers in Diophantus’ Arithmetic; Bibliography.
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Series: Spectrum

Magic Tricks, Card Shuffling, and Dynamic Computer Memories
is a book that explores the fascinating interconnections
between these seemingly unrelated topics. It is written for
undergraduate mathematics, computer science, and electrical
engineering majors, but it is accessible to motivated high
school math students and magicians who want to understand
the mathematics of card shuffling. It is a fun book that stands
alone, but it could nicely supplement classes in discrete
mathematics, combinatorics, algorithms, and computer net-
works. This book looks at the mathematics of the perfect
shuffle and develops the algorithms for controlling dynamic
memories (and doing some clever card tricks).

Each chapter begins with the description of a card trick and
ends with its explanation, usually using mathematics devel-
oped in the chapter. The book itself is designed as a prop for
a trick, but you don't need to use or understand any of its
mathematics to do some good magic.

Read what reviewers have said about this book!

Magic Tricks, Card Shuffling, and Dynamic Computer
Memories is essential reading for any magic buff who can faro
shuffle or who wishes to acquire this unusual skill. The book will
also be of great interest to computer scientists and to mathemati-
cians working in the field of combinatorics ... anyone can read it
with enjoyment and profit who is curious about the art and mathe-
matics of card magic, or about the unexpected application of per-
fect shuffles to the storage and retrieval of computer information.
—Martin Gardner

Provides a fascinating mix of history, mathematics and great magic
tricks. 1learned something on every page.
—Ron Graham, Chief Scientist, AT&T
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Magic Tricks, Card Shuffling, and
Dynamic Computer Memories

....a tour de force for Morris... This is a most unusual and effec-
tive way to learn the concepts embodied in the interconnections
of today’s parallel computers.

—Harold Stone, NEC Research, Princeton

Table of Contents: The Perfect Shuffle: The Origins of the
Perfect Shuffle; The Faro Dealer’s Shuffle; The Mathematical
Model of the Perfect Shuffle; The Stay-Stack Principle; Trick
1.2 (The Seekers, by Paul Swinford); The Order of Shuffles:
The Product of Shuffles; Moving a Card in a Deck; Trick 2.9
(A Spelling Bee); Shuffle Groups: Randomizing a Deck of
Cards; Shuffles and Cuts in Even Decks; Shuffles and Cuts in
Odd Decks; Out- and In-Shuffles in an Even Deck; Trick 3.8
(A Challenge Poker Deal); Generalizing the Perfect
Shuffle: Out-Shuffling Several Packets of Cards; Looking for
a Neat Formula, Permutation Matrices; Generalizing
Theorems; Generalized Shuffle Groups; Generalizing the In-
Shuffle; Trick 4.7 (The Triple Seekers); Dynamic Computer
Memories: The Shift-Register Memory; The Perfect Shuffle
Memory; The Shift-Shuffle Memory; Details, Details, Details;
The Perfect-Shuffle Memory for N=2n: Sequential Accessing
in a Perfect-Shuffle Memory of Size N=2n; Properties of
Tours; Epilogue; Trick 5.20. (Unshuffled by Paul Gertner);
Appendix 1: The Order of Shuffles; Appendix 2: How to do
the Faro Shuffle; The Double or Ordinary Faro Shuffle; The
Triple Faro Shuffle; Appendix 3: Tours on Decks of Size 8,
16, 32, and 64, Bibliography: Selected Perfect Shuffle
References.
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In Polya’s Footsteps

Miscellaneous Problems and Essays

Series: Dolciani Mathematical Expositions

Ross Honsberger

Anotber elegant collection of problems from Ross Honsberger

The study of mathematics is often undertaken with
an air of such seriousness that it doesn’t always seem
to be much fun at the time. However, it is quite
amazing how many surprising results and brilliant
arguments one is in a position to enjoy with just a
high school background. This is a book of
miscellaneous delights, presented not in an attempt
to instruct but as a harvest of rewards that are due
good high school students and, of course, those
more advanced — their teachers, and everyone in
the university mathematics community. Admittedly,
they take a little concentration, but the price is a
bargain for such gems.

A half dozen essays are sprinkled among some
hundred problems, most of which are the easier
problems that have appeared on various national and
international Olympiads. Many subjects are

represented — combinatorics, geometry, number
theory, algebra, probability, ... . The sections may be
read in any order. The book concludes with twenty-
five exercises and their detailed solutions.

Something to delight will be found in every section
— a surprising result, an intriguing approach, a stroke
of ingenuity — and the leisurely pace and generous
explanations make them a pleasure to read.

The inspiration for many of the problems came from
the Olympiad Corner of Crux Mathematicorum,
published by the Canadian Mathematical Society.
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