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Introduction 

The whole is the sum of its parts-what might those parts look like? If we have two 
very different-looking sets in the plane, when can their corresponding separate parts 
look alike? It is a question with some surprising answers. 

In FIGURE 1, two closed sets A and B are composed of disjoint subsets-A = A1 U A2 
and B = B1 U B2-in such a way that A1 is similar to B1 and A2 is similar to B2. For 
the "summands" to be truly disjoint, we must also account for the boundaries. To 
obtain the desired similarities, we assign the bottom edge of the square A1 to.the 
rectangle A2 and the top edge of the square B1 to the rectangle B2. Could the same 
sort of decomposition be obtained if, say, the set A was replaced by a circular disk? A 
glance ahead to FIGURE 3 might affect your answer. And look at FicuRE 4-can each of 
those sets be partitioned into two disjoint subsets so that the corresponding parts of 
each set look alike? How would you bet? 

F71'' A1 2 I.. -- . . .' 

A2 B 

FIGURE 1 

A remarkable result 

Two sets A and B in the plane are honothetic, denoted A - B, if they are similar 
and similarly oriented. For example, in FIGURE 2, the sets A, B, and C are homothets 
of each other, but not of set D (even though D is congruent to A) because "similarly 

32 
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oriented" does not permit rotations or reflections. Thus in FIGURE 1, with A1 missing 
its bottom edge and B1 missing its top edge, the sets Al and B1 are similar but they 
are not homothetic because the similarity mapping A1 onto B1 involves a 180? 
rotation. A homothetic transformation (or homothety) of the plane onto itself is a 
mapping of the form f(v) = k v + a, where a is a constant vector and k is a positive 
scalar constant. When k = 1, f is a translation. When a = 0 and k = 1, f is the 
identity mapping. When a = 0 and k # 1, f is a contraction toward the origin or an 
expansion about the origin, according as k < 1 or k > 1. When k $' 1, we may set 
m= 17(1-k) and note that 

f(ma + (v - ma)) =f(v) = kv + a = ma + k(v-ma), 
thus representing f as a contraction toward or expansion about the point ma. 

--9~~~~~~~~~~~~~~~~~~~~~~~~~: -it. 5 M . 

FIGURE 2 

Using the definition, the reader will readily verify that the composition of two 
homotheties is again a homothety, that the inverse of a homothety is a homothety, and 
that each line is mapped by a homothety onto a parallel line. 

We will say that two sets A and B are 2-homothetic, denoted A = B, if each of 
them can be partitioned into two disjoint sets (A = A1 U A2 and B = B1 u B2 with 
A1nlA=0=BlnB2) in such a way that AI -B1 and A2 'B2. 

In FIGURE 1, if square B1 were on top of rectangle B2 rather than below, then A 
and B would be 2-homothetic, since the bottom edges of squares Al and B1 could be 
assigned to A2 and B2 respectively, and then no forbidden rotation would be needed 
to establish the similarities. But when B1 is tacked onto the bottom of B2, as in 
FIGURE 1, it becomes an interesting exercise to try to show that A and B are 
2-homothetic by finding the required partitions, remembering to take care of the 
boundaries. 

Another example is found in FIGURE 3, which suggests an infinite nesting of 
inscribed squares and disks that might show the square and the disk to be 2-homo- 
thetic!!! Of course, we must always be careful of what is happening on the boundaries 
of the subsets. Is it really true that a square and a disk can be built from the same two 
pieces if we are allowed just expansions and contractions? 

A B 
FIGURE 3 
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It is certainly not obvious that the two sets in FIGURE 4 are 2-homothetic, since the 
sets include isolated points, whiskers, random curves, components that may not be 
Lebesgue measurable (the shaded eye in B), and are generally as badly behaved as we 
could draw them. However, their 2-homotheticity is a consequence of the following 
remarkable result. 

FIGURE 4 

THEOREM 2HOM. Two sets in the plane are 2-homothetic provided each of them is 
bounded and has nonempty interior. 

Although Theorem 2HOM seems surprising, it turns out to be an easy corollary of 
the following strengthened form of the famous Cantor-Bernstein theorem, and thus is 
a nice example to show the geometric power of abstract set theory. 

THEOREM CBB. Iff: A -* B is afunction that maps a set A one-to-one into a set B 
(i.e., onto a subset of B) and g: B -+ A is a function that maps B one-to-one into A, 
then there are partitions A = A1 U A2 and B = B1 U B2 such that f(A) =B and 
g(B2)= A2. Setting h(a) = f(a) for all a E A1, and h(a) = g-'(a) for all a EA2, we 
have a one-to-one mapping h of A onto B. 

Proof of Theorem 2HOM. Suppose that A and B are both bounded, and each has 
an interior point. Since A has an interior point, A contains an entire circular disk C, 
and since B is bounded, a sufficiently great expansion of C about its center produces 
a larger disk D that contains B. The inverse of this expansion is a contraction (hence 
a homothety) that maps B into A. Similarly, there is a contraction that maps A into 
B. Since these contractions are clearly one-to-one, an application of Theorem CBB 
immediately yields the stated conclusion. a 

Under the hypotheses of Theorem 2HOM, there are infinitely many contractions 
that pull set A into set B, and infinitely many that pull B into A, so there are 
infinitely many partitions A = A1 U A2 and B = B1 U B2 for showing that A and B are 
2-homothetic. Nevertheless, it is an interesting exercise to try to draw (or even 
imagine) such a partition in specific cases such as the one provided by FIGURE 4. 

The original Cantor-Bernstein theorem asserts the existence of a one-to-one 
mapping h of A onto B, without specifying the relationship of h to the original 
mappings f and g. According to Fraenkel [81, the stronger form stated above is due to 
Banach [11, so we think of it as the Cantor-Bernstein-Banach (CBB) theorem. (The 
name of Schroder is often associated with the Cantor-Bernstein theorem. However, 
according to [81, the theorem was conjectured by Cantor, the first complete published 
proof was due to Bernstein, and an independent proof of Schr6der turned out to be 
defective.) See [5] for an extension of the CBB theorem. 

The first explicit statement of Theorem 2HOM may have been the one in [12], but 
Banach in [1] had already mentioned the possibility of geometric applications of the 
CBB theorem, and Theorem CBB was used in [2] to establish the famous Banach-Tarski 
paradox (see (7) below). 
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Two proofs of the CBB theorem 

With such a strong corollary, you might expect that CBB has a difficult proof, but the 
classic proof of Banach [1] (found also in Birkhoff and MacLane [4] ) is short and easy. 
It is the second proof below. Another nice proof of the CBB theorem uses a 
fixed-point theorem of Birkhoff [3]. To set this up, we need a quick review of 
complete lattices. 

A partial order for a set S is a binary relation < on S (i.e., a subset of the 
Cartesian product S x S) with these properties: 

1) Reflexivity: For each a E S the pair (a, a) is an element of the subset < of S x S. 
(We usually write a < b to mean (a, b) E ?. Thus reflexivity is the condition that 
a ? a for all a e S.) 

2) Anti-symmetry: If a < b and b < a then a = b. 
3) Transitivity: If a < b and b < c then a < c. 

The pair (S, <) is called a partially ordered set, or poset. For example, the real 
numbers form a poset with their usual ordering. But the reals have the additional 
property that every two elements are comparable, and hence we say that they form a 
totally ordered set. However, in posets it may happen that two elements a and b are 
not comparable-i.e., neither a < b nor b < a is true. 

An element s E S is a lower bound for the set T c S if s < t for each t E T. 
Similarly u E S is an upper bound for T if t < u for each t E T. The (necessarily 
unique) least upper bound for a subset T is an upper bound m for T such that m < u 
for eveiy upper bound it. Greatest lower bounds are similarly defined. A lattice is a 
non-empty poset in which each set of two elements (and hence each nonempty finite 
subset) has a least upper bound and a greatest lower bound. A comnplete lattice is a 
lattice in which every nonempty subset has a least upper bound and a greatest lower 
bound. The upper bound for the whole set S is usually denoted 1 and the lower 
bound for S is denoted 0. 

Some examples might help. 

Example 1. Let L denote the integer lattice in the Cartesian plane-the set of all 
points with both coordinates integers. If we define (x, y) < (u, v) to mean x < it and 
y < v (in the usual sense) then (L, <) is a poset. Some pairs of points, such as (5, 8) 
and (9, 6), are not comparable. But the point (5, 6) is the greatest of all their lower 
bounds. The finite part of L shown in FIGURE 5 is a complete lattice. The upper right 
point is the upper bound and the lower left point is the lower bound for the whole 
subset shown. However, the infinite set L is a lattice but not a complete lattice. 

* 0 0 0 0 0 

(5,8) 

* 0 0 0 0 0 

* 0 0 0 0 0 

(5,6) (9,6) 

FIGURE 5 
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Example 2. Let A(R2) denote the collection of all subsets of the plane R2. Then 
(GA(R2), c) is a complete lattice. For any nonempty collection C of elements of 
A(R2), the least upper bound (resp. greatest lower bound) of C is the union (resp. 
intersection) of all elements of C. 

When a function f maps a set S into itself, a point a E S is a fixed poinit for f if 
f(a) = a. Fixed-point theorems are among the most interesting and useful tools in 
mathematics. Theorem FP below is an all-time favorite that will be used to give a 
proof of the CBB theorem. A mapping f of a poset (S, <) into a poset (W, i) is 
order-preserving if x < y in S implies f(x) if(ly) in W. 

THEOREM FP [3]. Every order-preserving finction f of a complete lattice (S, <) 
into itself has a fixed point. 

Proof of Theorem FP. Let T = {a E S I a ?f(a)}. Clearly 0 E T so T * 0. Let in be 
the least upper bound of T. Since t < in for every t E T, and f is order-preserving, 
t ?f(t) ?f(n), so f(n) is also an upper bound of T. Hence min ?f(n) because iu is 
the least upper bound of T. Thus f(n) ?f(f(m)), so f(m) E T and f(m) < m. Since 
in ?f(rn) and f(mn) < mn, it follows from anti-symmetry that f(m) = in and mn is the 
desired fixed point. u 

Fixed-point Proof of the CBB Theorem. Assuming without loss of generality that the 
sets A and B are disjoint, we will use the given one-to-one into functions f: A -> B 
and g: B -> A to define a function Sp from the complete lattice (( A), c) into itself. 
For each subset of A, let C' = {a E A I a 4 C} denote the comnplement of C in A. 
Similarly if D c B let D' denote the complement of D in B. Then for each C C A 
define Sp(C) = g((f(C'))'). That is, we take the complement of C in A, map it into B 
by f, take the complement in B, and map this complement back into A by g. Since 
C1 c C2 implies f(C1) Cf(C2) and C' D C', it is easily seen that Sp is an order-pre- 
serving mapping of 1( A) into itself. Hence by Theorem FP, Sp has a fixed point. Call 
this fixed point A2, set A1 = A'2, and set B, =f(Al) = B'. Then the restrictions 
f: A1 -> B1 and g: B2 -' A2 are one-to-one and onto, and the partitions A = A1 U A2 
and B = B1 U B2 are the ones desired for the CBB Theorem. u 

Classic Proof of the CBB Theoremn [1, 4]). We again assume that the sets A and B are 
disjoint. A point x E A U B is a parent of a point y E A U B if x& E A and f(x) = y, 
or xC E B and g(x) = y. Since A and B are disjoint and the mappings f and g are 
one-to-one, each point of A U B has at imost one parent. That parent (if it exists) has 
at most one parent, etc. This sequence of parents forms the ancestral chain of y. The 
sequence may be empty, as would be the case if y E B \Vf A) or y E A \g( B). It may 
be infinite, as would be the case if y = g(f(y)) or y =f(g(y)). If the ancestral 
chain is neither empty nor infinite, it terminates in a point that has no parent. (See 
FIGURE 6). 

Now let Aevein' Aodd, and Ax, denote the points of A for which the length of the 
ancestral chain is respectively even, odd, or infinite. This partitions A, and B has a 
similar partitioning. It is clear that f maps A,, into B,,, Aeven into B odd, and Aodd into 
Bexveni Further, since each point of B,, U Bodd has a parent, the first two mappings are 
onto; that is, f( Ax) = Boo and f( Aevei ) = Bodd. Similarly, g( B) = A,, and g( Bex,en) = 

Aodd. Setting 

A1 = Aevzei1 U Ax., A2 = Aodd, B1 = Bodd U B.0, and B = Beven, 

we have the partitions whose existence is asserted by the CBB Theorem. u 
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,. B. . 

FIGURE 6 

ExAmPLE 3. In FIGURE 6, the contraction f about the point y0, in the interior of B 
maps set A homothetically and one-to-one into set B. Similarly, the contraction g 
about the point x,, 

E A is a homothety which maps B one-to-one into A. Clearly, 
each of the points x0, y0, and y is an orphan (i.e., has no parent). Thus the ancestral 
chain of xi = g( y) is just { y}, of (odd) length 1. Since xe. = g( y.) = g(f(x.), the 
ancestral chain of Y_ E- B is {xc, Y.,. X., Y., of infinite length. 

Remarks and open problems 

1) The setting for Theorem 2HOM was the plane R', but the definitions (2-homo- 
thetic, bounded, interior) and the proof of Theorem 2HOM are all valid in an 
arbitrary (even infinite-dimensional) normed vector space. 

2) When two subsets A and B of d-space are 2-homothetic and are both geometri- 
cally "nice" in some sense, it is interesting to ask how nice their summands (the 
sets Al, A2, B,, B2 in the partitions) can be made. Of course, niceness is in the 
eye of the beholder, and in any case the answer must depend on geometric or 
topological properties of the sets A and B. In particular, if the set A is 
connected, then it is impossible for Al and A2 both to be closed (or both to be 

open) relative to A unless one of Al or A2 is empty. However, one might hope to 
have Al closed and A2 open relative to A, and then of course B1 closed and B2 
open relative to B. FIGURE 7 shows that this can happen in some cases. In FIGURE 

7a, the sets A and B are both bounded and convex, but neither is compact. In 
FIGURE 7b, the sets A and B are both compact, but neither is convex. However., it 
seems that the following problems are open for each d> 2: 
(a) is there an example of two d-dimensional compact convex subsets A and B 

of d-space such that A and B are not homothetic but they are 2-homothetic 
by means of convex summands, A = A1 U A2 and B = B, U B2, in such a way 
that the sets A1 and B1 are not only convex but also closed? 

(b) If A and B are both d-dimensional compact convex sets in Euclidean 
d-space, must they be 2-homothetic by means of summands Ai and Bi that 
are connected? 

This content downloaded from 132.174.254.159 on Mon, 07 Dec 2015 02:56:17 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 1, FEBRUARY 1998 9 

_.~~~~~~~~~~~~~~~~~~~~~~ - | - - - 5- - - - -| . 

FIGURE 7 
In both cases, Al and B1 are closed relative to the sets A Al U A2 and B -B U B2 
respectively. In 7a, A and B are convex but not compact, and in 7b they are compact but not 
convex. 

3) In connection with problem 2(a), note that if A and B are compact subsets of 
d-space, each with nonempty interior, and A = A1 U A2 and B = B1 U B2 are the 
partitions constructed in the proof of Theorem 2HOM, then each A, and each B1 
is both an F,e-set (the union of countably many closed sets) and a G8-set (the 
intersection of countably many open sets). This follows from Banach's proof of 
the CBB Theorem. For let f and g be homotheties which, respectively, carry A 
into B and B into A. Define Ao = A, Bo = B, and having defined A, and B,, set 
Ai+I = g(B1) and Bi+I =f(Ai). Then each A, and each B, is compact, hence is 
a G8, set, and 

AO:Al D , Bo)B,pD *. 

It follows that each set A1\A1+1 is c-compact, as is each set Bi\Bi+,. Now 
define 

Aeven = (AO \A1) U (A2\A3) U * U (A2J-2\A2- 1) U %** 

Aodd = (A1\A2) U (A3\A4) U *.. U (A2j-I\A2j) U *.. 

A,=A flOAOn ln X 

and 

Beven = (BO\B) U (B2\B3) U ... U (B2j-2\B2J-1) U .. 

Bodd = (B,\B2) U (B3\B4) U .. U (B2jl \B2J) U .. 

Bo = Bo n B1 n 

Then each of the sets A. and B. is compact, each of the sets Aeven' Aodd, Beven, 
Bodd is 0--compact, and we have already seen that the desired partition is obtained 
by setting 

Al = Aeven U Ax, A2 = Aodd, B, = B.dd U B., and B2 = Beven. 

Since the disjoint sets A1 and A2 are both F -sets and their union is the compact 
set A, A1 and A2 are both also G8-sets. Similarly, B1 and B2 are both Fe-sets 
and G6-sets. 

4) It is an easy exercise to show that for any two homotheties f and g, the 
commutator fgf'g-1 is merely a translation. Thus, although the group of 
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homotheties is not commutative, its first commutator subgroup is commutative. 
This (the fact that the group of homotheties is solvable) is a key to showing that 
Lebesgue measure in d-space can be extended to a finitely additive measure that 
is defined for all bounded sets and is not merely invariant under translation but 
multiplies properly under all homotheties. When d = 2, a similar conclusion 
applies to the group of transformations of the plane generated by the rotations 
and the homotheties. (See [20], Chapter 10.) 

5) It is easy to see that the homothety relation is reflexive, symmetric, and 
transitive. In particular, if B = kA + a and C = mB + b, then C = (kin) A + 
(na + b), so A C. The 2-homothety relation = is reflexive and symmetric, but 
it is not transitive. FIGURE 8 shows sets A, B, and C, made up of parallel 
half-open inteirvals in the plane, with A = B and B = C, but it is not true that 
A = C. 

A B C 
FIGURE 8 

6) For any integer r with 2 < r < A| = B we may define sets A and B to be 
r-homothetic in the obvious way: there exist partitions A = A1 U . U Ar and 
B = B1 U .. U Br and homotheties f (x) = k,x + ai such that f (Ai) = Bi for 
each i. If, in addition, each Ai and each Bi has at least two points and the scalars 
kl,..., k, are all different, we say that the sets A and B are nontrivially 
r-homwothetic. In FIGURE 8, A is nontrivially 3-homothetic to C but A and C are 
not 2-homothetic. Other aspects of r-homothety make easy exercises. 

7) A new family of problems arises when the group of homothetic transformations is 
replaced by some other group of transformations such as the rigid motions. The 
most famous result in this direction is the Banach-Tarski paradox [2], asserting 
that if d ? 3 and A and B are subsets of d-space each of which is bounded and 
has nonempty interior, then A and B are equtidecomposable in the sense that for 
some finite n, A can be partitioned into n sets A1,., A, and B can be 
partitioned into n sets B1,..., B, such that Ai is congruent to B. for 1 < i < n. 
See [18] and [9] for expositions of some aspects of the Banach-Tarski result, and 
see Wagon's book [20] for an extensive study of the "paradox" and related 
material. 

8) In connection with the questions in 2), see [17] and [11] for some results and 
problems that involve decomposing two convex sets into a finite number of 
respectively congruent convex parts. And see [6] for a proof that in partitioning a 
ball of unit radius (in 3-space) into five sets that can be rearranged to form a 
partition of the union of two such balls, it can be arranged that each of the five 
sets is both connected and locally connected (of course, they cannot all be 
measurable). 

9) Because of the measure-extension result mentioned in 4), if two subsets of the 
plane are both bounded and Lebesgue measurable, they cannot be equidecom- 
posable unless they have the same measure. In 1925, Tarski [19] posed the 
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following modern version of the problem of squaring the circle: If D is a circular 
disk and S is a square of the same area, are D and S equidecomposable? Dubins, 
Hirsch, and Karush [7] showed that a circle and a square cannot be decomposed 
into respectively congruent parts that could (intuitively speaking) be cut out with 
a pair of scissors. However, Tarski's questionl did not restrict the nature of the sets 
in the partitions, and a brilliant affirmative solution to the question was given by 
Laczkovich [15] in 1990. His partitions involve a very large number of sets, but he 
requires onlly translations rather than the full group of rigid motions to move 
these sets from a disk-filling position to a square-filling position. For an excellent 
exposition of his work, see the article by Gardner and Wagon [10]. See also [14] 
anld the 1994 survey article by Laczkovich [16]. 

10) Even though Theorem CBB has the remarkable decomposition result Theorem 
2HOM as an easy consequence, neither proof of CBB used the axiom of choice. 
This is in contrast to the situation for the measure-extension result mentioned in 
4), for the Banach-Tarski paradox in 7), and for the theorem of Laczkovich in 9). 

Acknowledgment. We are indebted to Jack Robertson for suggesting that we write this article and to him, 
Stan Wagon, Richard Gardner, and Kevin Short for helpful comments. A shorter version appeared in [13]. 
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Introduction 

Tilings have appeared in human activity since prehistoric times. They are used in the 
design of floor and wall coverings for cathedrals, commercial buildings, and personal 
dwellings. Mathematicians stucly the geometric structure of tilings. A checkerboard is 
an elementary example of a sinilarity tiling, one that is composed of smaller tiles 
(,rep tiles) of the same size, each having the same shape as the whole. Each rep tile in 
the checkerboard is the scaled and translated image of the entire board. For the 
checkerboard in FIGURE la, the lower left tile is the image of the checkerboard under 

(O, 1) 1 

thepropertiesboflnard mappingthtg eraesmlit Triings.riln 

*h presearchies cof ltear \vpile on a groesonalerate frmheUniversity ofiAinos. 

* Research slas cnducted zlllile ol plofessiollal laxle fiom the 

Ullver......f... ... 
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In a more general setting the mappings may also involve rotations. For instance, the 
equilateral triangle T in FIGURE lb is a similarity tiling since it is composed of four 
smaller equilateral triangles T1, T2, T3, T4. Consider the mappings defined by 

f=[X2] 0 ] [ 5 ? ']X2] 

[X2 ] [ 52 
L x r3 / 4 1?1 .5 : 

[X2 0.75] [ -.5 5J[x2J 

Then T7 =fj(T), j = 1,. 4. Notice that the matrices "shrink" the tiling T to a rep 
tile, and the last matrix also performs a rotation. Adding the fixed vectors to the 
corresponding rep tiles translates them to their appropriate locations. 

The checkerboard and triangle tiles have straight edges. In this paper we are 
interested in generating tilings with tiles (fractiles) whlose boundaries are fractal 
curves. (Various definitions of fractal curves are given in [2], [11], and [12]. However, 
as Barnsley states in [2, p. 33], fractals are best explained by the many pictures and 
contexts that refer to them.) We will use an iterative process, involving repeated 
compositions of two or more functions, to generate these fractal tilings. The functions 
are constructed from translates of the inverse of a linear transformation g( .) = MA, 
where M is an invertible 2 X 2 matrix with integer entries. (Geometric properties 
used later in this article require that AM be an integer matrix.) The inverse transforma- 
tion g- (z) is the "shrinking function" that maps the entire fractal tiling onto a 
fractile. Before outlining the underlying mathematics, we briefly describe the basic 
algorithm and illustrate it with some examples. 

Examples of fractal tilings 

As a simple example, consider the matrix M = [ ], where the integers a and b 

are chosen so that a2 + b2> 1. If we interpret [ '] and [ as points in the complex 

plane, then M[ ]=[' + >] represents complex multiplication of xl + ix2 by 
a + ib. Next, we choose a collection of vectors to translate copies of the fractile so that 
they are positioned correctly in the tiling. Notice that the unit square, determined by 
the vectors and [j, is mapped by Ml onto the square S, of area m = a2 + b2, 

spanned by vectors V b] and v2 = [a.] Define the set ' = {rj} of vectors with 
integer coordinates that lie in or on S but not on the two outer edges that do not have 
the origin as a vertex. Then g contains exactly m vectors; we will use them for the 
translation vectors {rj}. The tiling can be drawn by a computer using the iterative 
procedure illustrated in Examples A and B. 
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14 MATHEMATICS MAGAZINE 

Example A. Let M= [ fl; then m=2. From the square in FIGURE 2a we 

determine the two translation vectors r, = [o] and r2 = [. Then 8'= {rl, rj, and 
for z = (x1, x2), we define the mappings fj(z) = ri + M (z) for j =1, 2. That is, 

XI= l [0] 5 .5] x] 

[x2 ] [0 ] [5 .5 ][x2] 

To initiate the iteration process we randomly choose any point zo in the plane and 
evaluate f1(zo) and f2(zo). Then for n> 1, we choose recursively and randomly 
ne fV1(zn-i)'f2(zn-i)}* After a few iterations the generated points lie near the 

tiling. So for n > 100, plot the points as they are generated. FIGURE 2b shows the result 
of several thousand iterations. (Increasing the number of iterations may improve the 
quality of the computed image. Special purpose software for drawing fractal tilings is 
described at the end of this paper.) The boundary of the spiral, the snowflake curve, is 
an example of a fractal curve. Mandelbrot [12] showed that the distance along the 
boundary between any two points is infinite. 

(1, 1) 

(1,-i) 

a b 
Detemining the translation vectors Snowflake spiral 

(m = 2) 
FIGURE 2 

The collection of functions {fj} is called an iteratedfunction system. The set A of 
randomly generated points that results from this process is called the attractor. Notice 
that A =A1 UA2, where Aj=fj(A) and the Aj's have disjoint interiors. 

Using M from Example A, the reader can explore the four different tilings 
generated when r2 is replaced by any of [], [ _ 1 l, and [ l. Observethatthe 
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shape of the tiling may change with the choice of translation vector. 

Example B. Let M= [1 l]. As shown in the parallelogram in FIGURE 3a, let 

r= [ , r2 = [0I and r3 = [ I] This choice of vectors produces a tiling with the 
three tiles stacked horizontally as shown in FIGURE 3b. As an exercise, we recommend 
that the reader choose translation vectors and generate a tiling for the matrix 
M= [1 I]. 

1 2 

(2,1) 

ri~~~~ .g s ;a 

(1,-1) 

a : 

Determining th tunslatiep _~toj. Hoizonta tilng 

FIGURE 3 

Generating the tilings 

What characteristics of a matrix M and translation vectors rj determine an iterative 
process that produces a desired tiling? We want the invertible integer matrix 
M= [a b] to be an expansive map; i.e., all the eigenvalues of M have modulus 
larger than 1. A property of expansive maps is that, for some n > 0, M-" is a 
contraction mapping; i.e., I M-n zI < Iz. This ensures that iteration using the collection 
of functions j= + M' z, j = 1, . . ., m, produces the attractor regardless of the 
choice of translation vectors {r1) or of initial value zo. (The definition of convergence 
to an attractor, using an iterated function system, requires a knowledge of the 
Hausdorff metric. For more details, see chapter 2 of Barnsley [2].) 

How are translation vectors chosen to produce tilings? For a matrix M as given 
above, Idet(M)l = lad - bcl = m is the area of the parallelogram P spanned by the 
vectorsv1= [la] and v2= [d]. Recall that the vectors in g are those with integer 

coordinates that lie in or on P, but not on the two edges that do not contain [1 . We 
shall call these vectors the principal residue vectors. Let L denote the lattice of all 
points in the complex plane with integer coordinates. (These points are known as 
Gaussian integers.) Note that ' c L. For j = 1, . . ., m, define L = {rj + Mx: x E L}. 
The vectors {r.} are said to form a complete residue system for M, fecause L = U 7-i L1 
and Lj n Lk = 0 whenever j * k. (For more on complete residue systems, see Gilbert 
[4].) 
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The corner points of the parallelogram P are members of L and are linear 
combinations (with coefficients either 0 or 1) of the columns of M. All integer linear 
combinations of the columns of M form a subset G of L. In the plane, the subset G 
forms a grid of parallelograms, each congruent to P. Each parallelogram contains m 
points of L, just as P does. (We count the points in the congruent parallelograms with 
the same conventions as in P. See, for example, FIGURE 4a.) Each point r1 of L inside 
P is equivalent to one point y. (and we write ri = y.) inside each of these congruent 
parallelograms. In general, as long as Yi = r= [? and yj = rj for j = 2,. . ., m, then 
the collection {yj} will also form a complete residue system for the matrix M. 
Following Example A, each of the four additional vectors was equivalent to vector r2. 
The location of the residue vectors determines the location of the fractiles, and the 
shape of the tilings may change dramatically with different choices of residue systems. 

( 1, 2) / \ 

'';"' \ Tr2 ,(a,l "sT !13:7 %1t4 0r5 

a b 
Locating the residue vectors 5-rep tile with symunetiy 

(m = 5) 
FIGURE 4 

We can summarize these ideas as follows: 

PROPOSITION. Suppose that M represents an expansive map, {Yi, Y,. is a com- 
plete residue system for M, and fj(z) = y. + M- z. Then the attractor set A = u m A 
is the union of m tiles A, that have disjoint interiors and satisfy Aj =fj( A). Such tiles 
are called m-rep tiles. (This result is Theorem 1 in [11.) 

We illustrate the construction of a tiling using m-rep tiles in the following example. 

Example C. Let M = - I then m = 5. As FIGURE 4a illustrates, the principal 

residue vectors are r= [I, r2= [IJ, r3= Ij, r4 = 2 and r5 2 . For a more 
symmetric tiling, we choose equivalent vectors for our residue system. FIGURE 4b is 
generated by setting Yi = rl, Y2 = r2, Y3 = [ O] r3, y4 = [o] r4, andY5 [ fl 
r5. Note that the vectors {Y2, Y3,Y4 Y54, considered as complex numbers, are the 
fourth roots of unity and are symmetric about r,. 
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Constructing tiles with radial symmetry 

In Example B, we can replace [0] with the equivalent vector [ 0] and use [?], [l]' 
and - 1 as residue vectors. Observe that [l] and - 1 are symmetrically located 

about r1 = [0f. Can we always find residue vectors r2,. rm that are symmetrically 
located about r1? That is, can we construct a tiling that exhibits radial symmetry about 
r1? (See, for example, FIGURE 4b.) This turns out to be possible only when m = 2, 3, 4, 
5, and 7. (For an algebraic proof, see [81.) The cases m = 2, 3, and 5 were illustrated 
in previous examples. The cases m = 4 and m = 7 require more analysis. 

For m = 4, the matrix M = [b b] must represent an expansive map and have 
determinant 4. These conditions mean that (a - AXd - A) - bc =0 has roots A with 
IAI > 1 and that ad-bc = 4. Since A =[(a + d)? vf(a + d )2-16 ], we have two 
cases: (i) If (a + d)2- 16 < 0, then A is complex, Ia + dl < 4 and AA = 4. (ii) If A is 
real, then la+dl>4, and IAI>1 implies that la+dl- j(a+d )2-16>2, or 
Ia + dl < 5. Thus Ia + dl = 4. From (i) and (ii) we conclude that M must be chosen so 
that la + di < 4. In Example D, a + d = 2. 

Example D. Let M = 2 -2 , with principal residue vectors as shown in FIGURE 
5a. To achieve radial symmetry we want to generate a tiling using three vectors 
symmetrically located about r1 = []. The vectors Y = r1, Y2 = [o] 2 Y3 

- [il] z r3 and y4 = = [= ] form a complete residue system for M, but they are 

not symmetric about rl. We observe that the complex third roots of unityv = [1/2 

v2= [ and v3 = [ a/2] are symmetrically located about rl, but that the vectors 
v1 and v3 are not Gaussian integers. If we apply the linear transformation represented 

a h~~~~~a 

,i (2,2a)t 

A 7~ ~~~~. ......... 
(-2, 0)/ :f 

,,, r2 ,,rl 47 Y2 ~ 

------------------ t 
...... 

a b 

Locatng equivalent residue vectors 4-rep tile with smmety 
(m = 4) 

FIGURE 5 
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by B = O /2 ], then we get B y-=yl, By2 = v2, By3 =v3, and B y4 = vl. The 

iteration process can now be performed using the functions f1(z) = B yj + h -'(z), 

where h = BMB' and h '=[j/4 14/ . (Note that h' represents multiplica- 

tion by the complex number 1/4 - iV3/4.) The resulting tiling is shown in FIGURE 5b. 
The transformation B is the change of basis matrix that converts the lattice formed by 
g into one formed by v, and v2. The reader is encouraged to try the same procedure 
for other matrices M with la + dl < 4. 

To see that, even after a change of basis, the transformations produce a tiling, set 

Aj = fj( A) = yj + M- A). Then A = Uj_l AJ and the A1's have disjoint interiors. 
Set K := B(A.) for each j and K:= B(A). Then Kj = B(yj + M-1(A)) = Byj + 
BM-1B-1B(A) = Byj + h-1K. It follows that K = U in I Kj and that the Kj's have 
disjoint interiors. 

In the next example, we will construct a tiling with six unit vectors symmetrically 
located on the unit circle. We use the complex sixth roots of unity, vj = exp(irj/3), 
1 ?j ? 6. In this case, det(M)= 7; for reasons discussed prior to Example D, we 
must restrict Ia + dl < 7. 

Example E. Let M = -2], with principal residue vectors {rj} as shown in 

FIGURE 6a. Note that we can choose the residue vectors Yi = r1, Y2 = r23 = [ fl 
r3, Y4 =[I zr4, Y5 [Ir5, Y6=[ J]r6 and y7=LIz]r7. We set B 

= [o /2] and note that Byj+ = vj, <j < 6. We now iterate using the functions 

'.5 
(-2,3) 

(1,2)~ 
0r6 r4 

f3 / 

Y ? 

a b 
Locating equivalent residue. vectors Gosper snowflake 

(mma 7) 
FIGURE 6 

This content downloaded from 132.174.255.116 on Sun, 31 Jan 2016 16:08:34 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 71, NO. 1, FEBRUARY 1998 19 

fj(z)=Byj+h-'(z), j=l,.,7, wllere h-1=B-1M-1B=K2/7 
3 /7J. Again 

we note that the matrix h1 represents multiplication by the complex number 2/7 - 
iF/7/7. The resulting tiling, called the Gosper snowflake, is shown in FIGURE 6b. The 
Gosper snowflake changes the regular hexagon "just enough" to allow a subdivision 
into seven similar fractiles. 

Similarity maps 

A similarity map g satisfies Ig(x) - g(y)I = rIx - yI, for r > 0 and all x,y in the plane. 
Geometrically, a similarity mnap is a composition of any collection of the four simple 
mappings: scaling by a positive factor r, rotation about the origin, translation, and 
reflection. If each mapping in our collection {fj} is a similarity map with 0 < r < 1, 
then the resulting tiling (attractor) A is self-similar. That is, A is the union of in 
smaller copies of itself. In this case, the attractor has the same shape as each of 
its m-rep tiles. This phenomenon appears in FIGURES 2b, 4b, 5b and 6b. Each of 
these rep tiles arises from a special sort of linear map: multiplication by a complex 
number. 

Multiplication by a complex number 

As we have seen, each complex number q- a + i,/ corresponds to the matrix 

h=[ L: 3]; 

then the matrix operations correspond to ordinary arithmetic operations on complex 
numbers. If Iql > 1, the map h is expansive, since the eigenvalues of h have modulus 
a 2 + 832 = Iql . Also, h is a similarity map, since if z = (xI, x2), then 

Jh(x1, X2) 2 = (ax1 - /x2)2 + ( 23x1 + x2)2- (a2 + /32)(X2 +X2) I q121 X12. 
FIGURE 2b is derived from the complex number 1 - i and FIGURE 4b from 2 + i. 

If a and /3 are not integers, but IqI > 1, a change of basis can still produce a 
similarity map h from an integer matrix M. For example, define the change of basis 
matrix 

B := ? ]; 

set 

[2a a2+/32] 

and let h BMB 1. If a and /3 are chosen so that M is an integer matrix, all earlier 
methods can be applied. We illustrate the process in the next example. 

Example F. Let q = + i-5/2. With B = [ /2] we find that M 

= [-l , and r, = 5 r2 = [0, r3= [0], and r4= [0]. A tiling can be derived 
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using the functions fj = B y + h 1'(z), wherey1 = [fl r1 Y2 =r2,Y3 = r3, 

Y4= r4and h=BMB-1. 

Developing similarity maps 

In Examples D and E, a change of basis applied to M produced similarity mappings 
and attractive tilings. This process works-i.e., we can choose a matrix B such that 
h = BMB -1 is a similarity mapping-if M either has (i) two real eigenvalues with 
equal modulus and independent eigenvectors or (ii) a pair of complex conjugate 
eigenvalues. 

In case (i), let A1 and A2 (A1 = ? A) be real eigenvalues for M with corresponding 
eigenvectors v, and v2. Let B' = [vI, v2] be the matrix with column vectors v, and 
v2. Then 

MB1= M [vi, v2] = [AilVl, A2v2]=B1[ 0 ] 

so that h I= BMB- '=[ Al ] is a similarity map. Then h can be used to generate 

the tiling with functions of the form fj = B + h' (z), where {yj} are residue vectors 
for M. (Note that h depends only on the choice of eigenvalues while the translation 
vectors, and the tiling, vary with the choice of eigenvectors.) Example G illustrates this 
case. 

Example G. The matrix M= 2 _2 has determinant -6 and eigenvalues A= 

+ 6. Associated eigenvectors of M are v1 = [ (l/_2)/2] and v2 = [(F+2)/2] SO 

B-1= [( 2)/2 ( -+2)/2] and the similarity map is h = [ 0 /]. FIGURE 7 

shows the tiling generated using the functions fj(z) = Brj + h' (z) with principal 
residue vectors 

r= [?]r2 = [j],r3 = [2] r4 = [ 2]>r5 = [ l]r6 = [ 3] 

........ > . e .1 

FIGURE 7 
Similarity tiling using a change of basis (m 6) 

in case (ii, suppose that M = ['b has complex conjugate eigenvalues A =a +i8 

_ _ S , c _ 
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and A=a- i,3, 13 O. Let v = [ LVI + , be an eigenvector associated with A. 

Then B = [ 12 is the inverse of an appropriate change of basis matrix for 
LV21 V22 

obtaining a similarity transformation h. To see this, keep in mind that the real and 
imaginary parts of Mv and Av must be the same, and use the same strategy as in case 

(i) to obtain MBl = B [ '] .Therefore, h = [_ , which represents multi- 

plication by the complex number A. Since B -1is defined using an eigenvector of M, 
the matrix B can have many forms. For example, if we choose vI = 1 + iv12 and 
v2 = 0 + iv22, we find that 

B-1= *a I and B= L o ( 1a 

as illustrated in Example H. If, as in Example I, we choose v, = 1 + iO, we have 

Bi =[a-a !1] and B=[a-a b]- 

In both cases, the transformation h = BMB1 is a similarity mapping. 

Example H. Let M = [1 f l; then M has determinant 3 and eigenvalues 3 + 

iV_/2. With B I- ] the similarity mapping h = BMB- is given by the 

matrix [ V5/2] If we choose the residue vectors y, = [0I, Y2 = ,and y3 

- LI] and iterate using the functions fj = Byj + h'(z), j = 1,2,3, we obtain the 
so-called terdragon shown in FIGURE 8. (For comparison, see again the 3-rep tile of 
Example B, and note the subtle changes in the matrices.) 

M.. 
. ... ...:.. N .sl II 

.. . _ 
........"..| 

FIGURE 8 
The Terdragon (a 3-rep tile) 
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Example l. Let M = [ ;then det(M) = 5 and M has eigenvalues A = 2 ? i. 
The change of basis matrix B = [1 ?] yields the similarity transformation h= 

.11~~~ 
BMB-1 - =2 - . With the residue vectors 

Y= Y2 = [ 1 ] Y5 

we obtain the 5-rep tile shown in FIGURE 4b. 

Variations 

Once one begins to generate tilings as above, ideas for modifying the figures abound. 
We demonstrate a few variations below; readers are encouraged to experiment 
further. 

Example J. What happens if one of the functions is removed from the iteration 
process? Using the similarity transformation from Example E, we generated the 
wreath in FIGURE 9 by omitting the function with residue vector rl. (Compare FIGURE 
6b.) 

FIGURE 9 
Wreath (modified snowflake) 

Example K Let M= [2 2] and use the residue vectors Yl, vl, v2, and v3 from 
Example D. FIGURE 10a shows the result. Notice that the fractiles appear to overlap. In 
fact, they do not. FIGURE 10b shows a modified version of the generated tiling, 
omitting the piece A1 associated with the Yi residue vector. This shows that the 
fractiles {Aj) are not simply connected. 
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a b 
4-rep tile Modified 4-rep tile 

FIGURE 10 

Note. Many computer resources are available for generating fractals. The Random 
Iteration Algorithm, presented by Barnsley in [21, can be used to generate pictures 
like those in this paper. Fractal Attraction [11] is another useful tool for investigating 
these ideas. FRACTINT, used to generate the fractals in this article, is freeware, 
available from http: / / spanky. triumf . ca / www / f ractint / 
getting. html. Generating fractals in color presents even more dramatic pictures. 
Acknowledgment. The authors wish to thank Frank DeMeyer, the referees, and the editor for many 
suggestions that improved this article. 
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Computing Eigenvalues and Eigenvectors 
Without Determinants 

WILLIAM A. MCWORTER, JR. 
LEROY F. MEYERS' 

Ohio State University 
Columbus, OH 43210 

Hans Zassenhaus (1912-1991) in mnemoriam 

Introduction 

We introduce some topics from the theory of determinants solely for the 
purpose offinding the eigenvalues of a linear transfornation. Were it not 
for this use of determinants we twould not cliscuss them in this book. 
-E. Nering [12] 

Who but Simon Legree would demand that a student use a determinant to compute 
by hand the eigenvalues and eigenvectors of the matrix 

3 A1 6 1 
A = -1 3 4 -1? 

-1 1 4 1- 

The student would first have to compute the 4 X 4 determinant det (tl - A), whose 
entries are polynomials, then find all the zeros of the resulting polynomial of degree 4, 
and finally, as is the case with this particular matrix A, find the null spaces of three 
4 X 4 matrices. 

To replace the computation of polynomial determinants and unwieldy null spaces, 
this paper describes a faster way, of greater educational value because it requires 
understanding of the concepts of eigenvalue and eigenvector. The algorithm, a 
modification of McWorter [11], uses only fundamnental concepts of linear algebra, 
especially linear dependence and independence, for the exact computation of eigen- 
vectors, and is easily extended to yield generalized eigenvectors and a Jordan basis. 
The algorithm produces the eigenvectors of the above matrix A in a few minutes on 
less than half a sheet of paper. 

This algorithm has been used in our elementary linear algebra classes for over ten 
years. One student comment seems to say it all, "I know it is faster, but with the 
determinant you don't have to think" (Denise Sayre, with permission). 

The first author, reading Nering's words quoted above while he was a fresh Ph.D., 
was motivated to eliminate the necessity for an excursion into determinant theory 
even to obtain eigenvalues. The underlying idea behind his ultimate approach is not 
new. A related determinant-free theoretical procedure was developed nearly 80 years 
ago by Kowalewski (1917) to find the invariant factors of a matrix. Bennett [2] in 1931 

'Professor Meyers died on November 8, 1995; he had been a member of the Ohio State University 
mathematics department since 1953. 
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partially remedied the lack of an explicit construction in Kowalewski's procedure. 
Kiylov [9] in 1931, while investigating systems of linear differential equations, showed 
how to simplify the computation of the characteristic polynomial det (t -A) for 
certain matrices A, and Danilevslii [5] in 1937 extended Krylov's algorithm to all 
square matrices. (Clearer expositions of Krylov's and DanilevskiI's algorithms are given 
in Faddeev & Faddeeva [6], pp. 263-273, 285-295; (1963), pp. 231-241, 251-260.) 

The present paper generalizes the algorithms of Kowalewski, Krylov, and Danilevskii 
by providing an elementary and efficient symbolic algorithm for the exact computation 
of eigenvectors. Section 1 illustrates the algorithm for finding eigenvalues and 
eigenvectors, Section 2 provides a justification for that algorithm, and Section 3 
describes, justifies, and illustrates the extension of the algorithm to find generalized 
eigenvectors. 

1. First example: eigenvalues and eigenvectors 

We begin with definitions. 

DEFINITIONS. Ant eigenvector of the matrix A over the field F for the eigenvalue A 
in F is a nonzero vector x such that Ax = Ax. The eigenspace for A consists of all 
vectors x such that Ax = Ax. 

Given an n X n matrix A over an algebraically closed field F (such as the complex 
numbers), the algorithm described here produces equations of the form (A - Al)x = 
o, with x an eigenvector and o the zero vector. 

The algorithm begins by following a procedure used in proving that every n X n 
matrix over an algebraically closed field F has at least one eigenvalue and correspond- 
ing eigenvector. (See Faddeev & Faddeeva [6], Cater [3], and Axler [1].) Let u be any 
nonzero vector in F' . Since F " has finite dimension n, the n + 1 vectors 
u, Au, A2u,..., A" u are linearly dependent. Let k be the smallest positive integer 
such that a0u + a, Au + a2A2u + +akAk u = o, for some ao,...,ak in F with 
ak 7A 0. Algebraic closure ensures that the polynomial aO + a1t + a2 t 2 + * +akt k in 
F[t] is factorable as (t - A)Q(t) for some A in F and some polynomial Q(t) in F[t]. 
Hence (A - AI)Q(A)u = o. The minimality of k implies that the vector ((A)u is 
nonzero and so is an eigenvector of A for the eigenvalue A. 

Very little modification of the procedure just described is needed to find every 
eigenvalue and a basis for each eigenspace of A. Indeed, we can illustrate the 
algorithm right now on the 4 X 4 matrix A above. We will justify the algorithm in the 
next section. 

As in the procedure above, begin by choosing u to be any nonzero column vector 
in C?4, say, for perversity, u = [ 0 1 - 1 1 ]T, denoted by (0, 1, - 1, 1) in running 
text. The vector u is called a seed because other vectors grow from it. Then compute 
Au, A2u = A( Au), A3u = A( A2u), etc., by successive left multiplication by A until, 
for the first time, Aku is a linear combination of the vectors u, Au, . . ., Ak - I u. Only 

u= (0,1,-1,1), Au= (6,-2,2,-2), and A2u= (6,-2,2,-2) 

need be computed, since A2u is the first of the generated vectors to be linearly 
dependent on previous generated vectors. One obvious dependence relation among 
the generated vectors is 

A2u-Au = o. (1) 

This content downloaded from 137.132.123.69 on Thu, 29 Oct 2015 11:48:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


26 MATHEMATICS MAGAZINE 

This dependence relation alone yields two eigenvalues and their corresponding 
eigenvectors. Equation (1) can be put into the desired form (A - AI)x = o by 
factoring in two ways: 

(A-lI)(Au) =o and (A-OI)(Au-u) =o. 

The first factorization says that Au belongs to the eigenspace for the eigenvalue 1, 
and the second factorization says that Au - u belongs to the eigenspace for the 
eigenvalue 0. The vectors Au and Au - u are nonzero because they are nonzero 
linear combinations of the linearly independent vectors u and Au (because the 
generation of vectors stopped at the first occurrence of linear dependence). Since u 
and Au have already been computed, the two eigenvectors can be given explicitly 
with little further work: 

Au = (6,-2, 2,-2) for 1; Au-u = (6,-2, 2,-2)-(0, 1,-1, 1) 

-(6, -3,3, -3) for0. 

At this point, the vectors u, Au, and A2 u generated so far, as well as the 
eigenvectors constructed from them, span a 2-dimensional subspace of C4. Additional 
independent eigenvectors, if they exist, must lie outside this subspace. Continuing the 
generation with seeds outside this subspace will get any remaining eigenvectors. 

Reseed with a new vector linearly independent of the vectors generated so far, say 
with v = (0, 0, 1, 0). Then compute Av, A2v, etc., until for the first tim,e a vector Alv 
is a linear combination of previously generated vectors. Only v = (0,0, 1,0) and 
Av = (-6, 4, -2, 4) need be computed, since the set {u, Au, v} is linearly indepen- 
dent, but {u, Au, v, Av} is linearly dependent. This dependence can be expressed by 
the equation 

Av-2v+Au-2u=o. (2) 

This dependence relation (as well as the check that {u, Au, v} is linearly independent) 
can be found by the usual methods; however, we are in a classroom situation and so 
we can make the dependence checks succumb to inspection, as in this example. 

Equation (2) can be put into the desired form (A - AI)x = o as follows: 

( A-2 12)(v + u) = o. 

This shows that 

v+u= (0,0,1,0) + (0,1, -1,1) = (0,1,0,1) 

is an eigenvector for 2. This eigenvector is linearly independent of those produced 
earlier, because it involves the vector v, which is outside the subspace spanned by the 
others. 

At this point, the vectors u, Au, v, Av generated so far, as well as the eigenvectors 
constructed from them, span a 3-dimensional subspace of ?4. To obtain further 
independent eigenvectors, if any, reseed with yet another vector linearly independent 
of the vectors generated so far, say with w = (0, 1, 0, 0). The set {u, Au, v, wI is 
linearly independent, but the set {u, Au, v, w, Awl, is necessarily linearly dependent, 
being a set of 5 vectors in a 4-dimensional space. One dependence relation is 

6Aw-12w+Au-4u=0. (3) 

(Standard basis vectors may always be used as seeds, not necessarily in turn; they 
sometimes simplify testing linear independence.) 
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Equation (3) cannot be put into the desired form (A - AI)x = o. But not to worry; 
we can combine this equation with equations (1) and (2) to get what we need. 
Equation (3) insists that A = 2. In fact, adding (1) to (3) produces 

6Aw-12w+A2u-4u= (A-21)(6w+Au+2u) =o, 

from which it follows that 

6w+Au + 2u = 6(0,1,0,0) + (6, -2,2, -2) + 2(0,1, -1,1) = (6,6,0,0) 

is an eigenvector for 2. This eigenvector is linearly independent of the eigenvectors 
obtained earlier because w occurs in it with nonzero coefficient and is outside the 
subspace spanned by the others. 

A mechanical way to find the right linear combination of equations (1), (2), and (3) 
involves putting these equations in quotient-remainder form: 

(A-21)(Au+u) +2u=o, 

(A-21)(v+u) + o=o, 

(A-21)(6w+u) -2u=o. 

By choosing, if possible, a nontrivial linear combination of remainders that adds up to 
o, the corresponding linear combination of these equations allows A - 21 to be 
factored out, and then the corresponding linear combination of quotients Au + u, 
v+ u, and 6w+ u is an eigenvector for 2. Since I (-2u) + o + I (2u) = o, the 
corresponding eigenvector is 1 (6w + u) + o + 1 * (Au + u) = 6w + Au + 2u = 
(6,6,0,0). 

The computation is finished. Since the generated vectors span C4, there can be no 
further seeds. The eigenspaces for the eigenvalues 0, 1, and 2 have respective 
dimensions 1, 1, and 2. Hence no further independent eigenvectors are possible. (If 
the remainder in equation (3) could not be eliminated, then there would be no 
additional eigenvector for 2 and no basis for ?4 consisting of eigenvectors of A. 
Section 3 shows how easy it is to complete a basis consisting of generalized eigenvec- 
tors.) 

The assertion made in the Introduction that the calculations take less than half a 
sheet of paper is confirmed by the compact display below, followed by the short 
calculation above for eigenvectors. 

A u Au A2u v Av w Aw 
3 -1 -6 1 0 6 6 0 -6 0 -1 

-1 3 4 -1 1 -2 -2 0 4 1 3 
1 -1 -2 1 -1 2 2 1 -2 0 -1 1 1 1 1 -2 -2 0 4 0 1 

0 -1 1 

-2 1 -2 1 

-4 1 0 - 12 6 

At the left is the matrix A. To the right of A are the vectors generated by the 
algorithm, labeled on top. A vertical rule is drawn to the right of each vector linearly 
dependent on those to its left. The numbers in the rth row under the generated 
vectors are the coefficients of the vectors that occur in the rth dependence relation. 
The relations are used to construct eigenvectors. 
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A change from the standard basis for C' to {u, Au, v, wi (those generated vectors 
that are not dependent on previous vectors) transforms the matrix A to Frobenius 
form 

O O 2 4/6 
1 1 -1 -1/6 

2 002 0 0 0 2 

a block upper triangular matrix in which the diagonal blocks are companion matrices. 
The rightmost columns of the diagonal blocks exhibit the coefficients in the depen- 
dence relations (1), (2), and (3) divided by the negative of the coefficient of the vector 
giving rise to the dependence relation. If the seeds for the Frobenius matrix are taken 
to be the first, third, and fourth standard basis vectors for C4, then the dependence 
relations are the same as those for A. 

As is evident from the above procedure, the only places where explicit entries in the 
matrix and vectors are used are in finding the dependence relations among the 
generated vectors and in writing the eigenvectors explicitly. Otherwise, linear combi- 
nations of the generated vectors are treated formally without regard to their values as 
vectors in C4. 

2. Description and justification of the method 

Let A be an n X n matrix over an algebraically closed field F. The first phase of the 
algorithm constructs a list of vectors called generated vectors, which span F"', together 
with a set of dependence relations among the vectors in the list in the following way. 
The first vector in the list, called a seed, is any nonzero vector. Suppose that the first 
k > 1 vectors constructed are vI, . . ., vk . If vk is not a linear combination of vI 1. - 1, 
then set v+? = -Avk. If vk is a linear combination of v1.Vk_l, then record one 
such linear combination and set v1( +1 equal to any vector not a linear combination of 
V, . . ., Vk_-, also called a seed, provided such a vector exists. The algorithm must end 
because the two cases can happen at most n times each. 

The generated vectors linearly independent of previously generated vectors form a 
basis for F" and are called independent generated vectors. The remaining vectors are 
called dependent generated vectors. 

As the first example shows, the algorithm uses vectors as they are and as they are 
expressed as linear combinations of generated vectors. For example, the first eigenvec- 
tor constructed in the first example arose first as the linear combination Au - u of 
the generated vectors u, Au, A2 u, v, Av, w, and Aw. It was then evaluated as the 
vector (6, -3,3, - 3). We will call a linear combination of generated vectors an 
expression and the set of all such linear combinations E. The set E forms a vector 
space under obvious rules for addition and scalar multiplication of expressions. A basis 
for E is the set of generated vectors regarded as expressions and so the dimension of 
E is n + mn, where n is the number of independent generated vectors and ni is the 
number of dependent generated vectors regarded as expressions. The integer rn is 
also the number of dependence equations generated by the algorithm and the number 
of seed vectors. The evaluation of an expression as a vector in F" is called the valute of 
the expression. 

We need to distinguish several subsets of E. Expressions whose value is the zero 
vector of F" are called null expressions. Expressions that are linear combinations of 
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only independent generated vectors are called lean expressions. The lean expressions 
form an n-dimensional subspace of E. The m dependence expressions constructed by 
the algorithm are linearly independent because each has a dependent generated 
vector with nonzero coefficient where all the others have that coefficient equal to 
zero. Hence the subspace of all null expressions has dimension at least In. Since no 
nonzero lean expression has the zero vector as its value, no nonzero lean expression 
can equal a null expression. Hence the set of all null expressions has dimension 
precisely m; so the dependence expressions form a basis for all null expressions. 

Let g1, . . . , g be the independent generated vectors regarded as expressions, and 
let A be a scalar. Then the expressions (A - Al)g,, for i = 1,...,n, are linearly 
independent because each has a nonzero coefficient for a generated vector where all 
others have a zero (i.e., the coefficient of Agi in (A - AI)g, is 1, while the 
corresponding coefficient in the other expressions is 0). Let s. s... be the seeds 
regarded as expressions. Then (A - AI)g1, . . ., ( A I-A)g,,, s1 . s...} is a basis for 
all expressions. Any nonzero linear combination of the (A - Al)g, has a nonzero 
coefficient for some generated vector which is not a seed, whereas a nonzero linear 
combination of seeds has that coefficient equal to zero. Hence every expression x can 
be written uniquely in quotient-remainder form x = (A - Al)q + r, where r is a 
linear combination of seeds regarded as an expression. 

Every eigenvector for the eigenvalue A can be expressed uniquely as a linear 
combination of independent generated vectors regarded as a lean expression x. Hence 
(A - AI)x can be regarded as an expression, indeed a null expression since the value 
of x is an eigenvector. We need the fact that lean expressions are linearly independent 
if and only if their multiples by A - Al are linearly independent. To that end, suppose 
v is a nonzero lean expression. Let gi be the latest generated vector in v with nonzero 
coefficient. Then (A - Al)v is an expression with the coefficient of gi+i nonzero. 
Now assume that vl,...,v, are linearly independent lean expressions and that 
Yta (A A- AI)yv is the zero expression, for some a,, not all zero. Then (A - AI)L,azv, 
is the zero expression and La,vy is a lean expression. Henice LYavy is the zero 
expression, contradicting the fact the vi are linearly independent. Conversely, assume 
that the expressions (A - Al )v, . . ., ( A-A)vP are linearly independent expressions, 
with the vi lean expressions. Suppose further that La,vy is the zero expression, with 
not all of the ai equal to zero. Then (A - AI)Ea1v1 = Ea1(A - AI)v1 is the zero 
expression, contradicting the assumption that the expressions (A - AlI)v are linearly 
independent. Thus lean expressions are linearly independent if and only if their 
multiples by A - Al are linearly independent. Therefore, to find a basis for the 
eigenspace for A, it suffices to find a basis for the subspace of all null expressions of 
the form (A - AI)z and then factor out the expressions z. 

A basis for the subspace of all null expressions of the form (A - Al)z can be 
constructed out of a basis for the space of all m-tuples (cl,..,cM) such that 

- 1c r = o (the zero expression), where (A - Al )qj + r is the quotient-remainder 
form of the dependence expression xi. This basis can be constructed exactly the same 
way the dependence expressions were constructed, with the rj playing the role of the 
generated vectors. 

Let x,, . . .x Xk be the basis for the null expressions of the form (A - Al)z and let 
x = (A - A)q i, for i = m + 1.., k, be their quotient-remainder forms. Then the 
values of the expressions qi, form a basis for the eigenspace for A. 

We have yet to address from where the eigenvalues come. They are the zeros of 
certain polynomials derived from the dependence expressions. Let d be a dependence 
expression and let s be the latest seed such that the generated vector A's has nonzero 
coefficient in d, for some i. If all such generated vectors are taken together, they can 
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be written in the form P(A)s, for some nonzero polynomial in F[x]. We show that 
the roots of these polynomials, one polynomial for each dependence expression, are 
the eigenvalues of A. 

Let v be an eigenvector with eigenvalue A. Express v as a linear combination of 
independent generated vectors and regard it as an expression. Then (A - AI)v is a 
null expression. As such, 

(A-AI)v= Eaidi, 
1 

where the di are the dependence expressions and the ai are scalars. Let p be the 
largest integer such that a. 0 0. Now each dependence expression di involves with 
nonzero coefficient only the first i seeds. Since (A - AI)v is a null expression, the 
coefficients of all seeds in this expression are zero. Thus, since only the p-th 
dependence expression can involve the p-th seed with nonzero coefficient, the 
coefficient of the p-th seed in the dependence expression dp must be zero. Hence 
the polynomial associated with the p-th dependence expression must have the factor 
A - Al. 

Conversely, if A is a root of one of the polynomials associated with the dependence 
expressions, let p be the least index such that the polynomial associated with the p-th 
dependence expression has A as a root. Then, for each i = 1.., p - 1, d, = (A - 
AI)qi + ri (the quotient-remainder form), with each ri 0 o. Moreover, for each 
i =1,., p - 1, the remainder ri involves with nonzero coefficient the i-th seed but 
no later seeds. Hence these p - 1 remainders are linearly independent and span the 
subspace spanned by the first p - 1 seeds. Now, since the polynomial associated with 
the p-th dependence expression has A as a root, its remainder rp does not involve the 
seed s. and so is an element of the subspace spanned by the seed expressions 
s ,.. .,s p _ Hence d , plus an appropriate linear combination of the first p - 1 
dependence expressions has quotient-remainder form with zero remainder; that is, d 
plus some linear combination of the first p - 1 dependence expressions is a nufl 
expression whose quotient expression evaluates to a nonzero eigenvector for A. 

3. Generalized eigenvectors and second example 

DEFINITION. A generalized eigenvector of positive integer order q (for short, a 
q-eigenvector) of the squtare matrix A for the scalar A is a vector x stuch that 

(A-A I)q'1xIoo but (A-Al)qX =0. 

In particular, a 1-eigenvector is an ordinary eigenvector. The generalized eigenspace 
of order q (or q-eigenspace) of A for A consists of all vectors x such that (A - Al )q X 
= o. The generalized eigenspace for A is the union of the generalized eigenspaces of 
all orders for A. 

The algorithm for producing a basis for the generalized eigenspace for A extends 
that described in the preceding section for eigenvectors. This time we look for 
equations of the form (A - AI)z = y, where y is a generalized eigenvector, not just 
the zero expression. The algorithm first constructs a basis for the 1-eigenspace as in 
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the preceding section, then, using this basis, it constructs a basis for the 2-eigenspace, 
and so on until a basis for the entire generalized eigenspace is constructed. 

Let A be an eigenvalue of the n x n matrix A over the algebraically closed field F. 
The construction builds a sequence x1, . . ., x III), .1 ... x of expressions as follows. 
x . ... x ,1 are the dependence expressions. As in the previous section, find a basis for 
all linear combinations of xl1, . x . ,, which have the form (A - A I)z. Set x,,,+I, ... )Xk 

equal to the quotients from this basis. These expressions, as vectors, form a basis for 
the 1-eigenspace for A. The set (xl,..-Xk} is linearly independent as expressions 
because no nonzero lean expression can equal a null expression. Next, find a basis for 
all linear combinations of the expressions (x1, . ., Xk} wlhich have the form (A - AI)z. 
This basis can be chosen so as to include the basis found above. Set Xk+1X, . . X. equal 
to the additional quotients, if any, that occur. The expressions xl,...,x, are all 
linearly independent because the dependence expressions are linearly independent, 
the lean expressions which as vectors are generalized eigenvectors are linearly 
independent, and no nonzero lean expression can equal a null expression. 

Continue in this way until no new expressions result. Then the values of the 
expressions x,,,+I, . .,x . form a basis for the generalized eigenspace for A. 

Let's illustrate this algorithm with an example. We begin with the display for a 
7 X 7 matrix A. 

A u Au A2u v Av A2v w Aw A2w A3w 

-5 1 - 28 1 -17 34 39 1 5 22 O 1 -1 O 1 6 11 
1 6 -29 -1 -45 66 61 0 1 6 1 6 25 0 -1 -2 -21 
5 -2 -33 3 51 -32 -1 0 5 30 0 -2 -27 0 3 16 65 
4 -2 -26 3 49 -37 -8 0 4 24 0 -2 -24 1 3 11 44 
2 -1 -13 2 23 -13 -2 0 2 12 O -1 -12 0 2 10 39 

-2 1 13 0 -26 23 5 0 -2 -12 0 1 12 0 0 -1 -9 
6 -3 -39 3 71 -52 -29 0 6 36 0 -3 -36 0 3 16 69 

8 -6 1 

- 8 3 8 -6 1 

3 1 -10 5 -8 12 -6 1 

The dependence expressions (see the bottom three rows of the display) are as follows: 

xI = 8u-6Au +A2u, 

X2 =8u + 3Au + 8v-6 Av + A2v, 

x3= 3u + Au - lOv + 5Av - 8w + 12 Aw- 6A2w + A3w. 

The polynomials Pl(t) = t- 6t + 8 = (t - 4)(t - 2), P2(t) = t2 - 6t + 8 = (t - 4)(t 
- 2), and P3(t) = t3 - 6t2 + 12t - 8 = (t - 2)3, obtained from the coefficients of the 
latest seed in each dependence expression, shows that the eigenvalues of A are 2 and 
4. We treat the eigenvalue 4 first. 

The quotient-remainder forms of the dependence expressions xi are as follows: 

x= ( A-41)( Au-2u) + 0, 

x2= (A-41)(Av-2v+3u) +4u, 

x3 =( A-41I) ( A3w-2 Aw + 4w + 5v + u) + 8w + lOv + 7u. 

Since the first remainder is zero, the corresponding quotient q1 = Au - 2u from xl is, 
as a vector, an eigenvector. The second remainder, r2 = 4u, is not a linear combina- 

This content downloaded from 137.132.123.69 on Thu, 29 Oct 2015 11:48:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


32 MATHEMATICS MAGAZINE 

tion of the first remainder, so we skip to the next remainder r3 = 8w + lOv + 7u. It is 
not a linear combination of the first two remainders. We now have a basis for the 
1-eigenspace for 4, namely, {ql = Au - 2u}, with q1 as a vector. 

Here is where the extension to generalized eigenvectors kicks in. Extend the list of 
expressions x, by appending the expression X4 = Au - 2u and compute its quotient 
and remainder: 

X4= Au - 2u = (- 41)u + 2u. 

Now check whether this fourth remainder r4 = 2u is a linear combination of the first 
three remainders. It is: 2r4 -r2 = o. The corresponding linear combination of xi, 
namely 2x4 - x2 has the form (A - 41)z and lies in the 1-eigenspace for 4. Hence its 
quotient 2q4-q2= 2u-(Av-2v + 3u) = -Av + 2v-u, as a vector, is in the 
2-eigenspace for 4. Now append the expression x5 =-Av + 2v - u to the list and 
compute its quotient q5 =- v and remainder r5 =- 2v - u. Test if this new remain- 
der is a linear combination of the other remainders; it is not. Thus a basis for the 
generalized eigenspace for the eigenvalue 4 has the two vectors x4 = (3, 1, 5, 4, 2, - 2, 6) 
and x5= (2, 4, - 2, - 2, - 1, 1, - 3). 

For the eigenvalue 2 the computation is longer, because the generalized eigenspace 
for 2 must have dimension 7 - 2 = 5. The computation is summarized in the table 
below. To emphasize that the,algorithm is the same for the eigenvalue 2 as it was for 
the eigenvalue 4, we use the same notation. 

The x; where from value quotient qj remainder r; 
xi =A2u-6Au+8u Au-4u o 

X2 ==A2-6Av+8v+3Au-8u Av-4v+3u -2u 
X3 ==A3w-6A w2+ 12Aw-8w A2w-4Aw + 4w 

+5Av-lOv + Au + 3u +5v + u 5u 

x4 = q, =Au-4u u -2u 
X5 =2q3+5q2 =2A2w-8Aw+8w 

+ 5Av-lOv + 17u 2Aw-4w + 5v 17u 

X6 =q2-q4 =-Av-4v+2u v -2v+2u 
x7 = 2q5 + 17q2 = 4Aw-8w + 17Av-58v + 51u 4w + 17v -24v + 51u 

X8 = 2q7 - 24q6 + 27q2 =,8w + 27Av - 98v + 81u 27v 8w - 44v + 81u 

The jth row of the table contains the constructed expressions xj, together with their 
quotients and remainders on division by A - 21. Except for the first three rows, 
which contain the dependence expressions, each xi is accompanied by its derivation as 
a linear combination of quotients. For example, since 2r5 + 17r2 = o, the combination 
x7= 2q5 + 17q2 is adjoined to the table. A horizontal rule separates the dependence 
expressions from the expressions which evaluate to generalized eigenvectors and 
further rules separate expressions which, as generalized eigenvectors, have different 
orders. 

The table shows that a basis for the generalized eigenspace for the eigenvalue 2 
consists of two 1-eigenvectors, x4 = (1, 1, 5, 4, 2, - 2, 6) and X5 = (2, 4, - 2, - 2, - 1, 
1, - 3); two 2-eigenvectors, x = (3, 2, - 2, - 2, - 1, 1, - 3) and x7 = (72,40, - 22, 
- 30, - 9, 17, - 39); and one 3-eigenvector x8 = (108, 64, - 54, - 46, - 27, 27, - 81). 
There are no further generalized eigenvectors for the eigenvalue 2 because the last 
remainder r8 is not a linear combination of earlier remainders; so the table cannot be 
extended. 
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4. Concluding remarks 

Who killed determminants?-May [10] 

In most developments of the eigenvalue problem, the characteristic polynomial of 
the n X n matrix A is defined as det (t - A) and used to obtain the eigenvalues of A, 
which numbers were then used to obtain eigenvectors. Here the characteristic 
polynomial plays no role. However, Cater [4] and Axler [1] show that the characteristic 
polynomial can be defined without determinants, as HA(t - A)'l(A), where the product 
is extended over the distinct eigenvalues A of A and d(A) is the dimension of the 
generalized eigenspace for A, which is equal to the dimension of the null space of 
(A - Al)'. 

The characteristic polynomial can, however, be obtained directly from the depen- 
dence relations without first finding the eigenvalues. Except for a nonzero scalar 
factor to make it monic, it is the product of the polynomials P,(t) introduced at the 
end of Section 2. Details can be found in McWorter [11]. 
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Variations on a Theme of Newton 
ROBERT M. CORLESS 

University of Western Ontario 
London, Ontario 

Canada N6A 5B7 

Introduction 

We use a particularly simple example function', and the computer algebra system 
Maple, to try to learn something about Newton's method. The discussion here 
presumes only a minimal amount of calculus-including the standard introduction to 
Newton's method, such as is found in [2, Sec. 2.10]-and some algebraic fluency. This 
discussion, though aimed at undergraduate students, contains surprises (perhaps even 
for instructors), items not found in the usual calculus course, and pointers to many 
more such items. The intention is to provoke or reinforce an interest in pure and 
applied mathematics. If this works, everyone will take something new away. 

Newton's method 

Newton's method is for approximately solving nonlinear equations f(x) = 0. Applied 
mathematics problems usually lead to nonlinear equations-we cannot rely on every- 
thing being linear. Some examples of applied problems requiring Newton's method or 
an equivalent are: 

* so-called "implicit" numerical methods for the solution of ordinary differential 
equations. 

* practically any engineering design problem, where instead of being asked to 
calculate the behavior of a machine or system as given, you are asked to calculate 
the design parameters that will make the system behave in a certain desired way. 
For example, many problems in robotic control fall into this category. 

* computer-aided design uses piecewise polynomials to model physical objects. 
Calculating their intersection points requires the solution of systems of polyno- 
mial equations. Even if initial approximations to the solutions are arrived at by 
other means, Newton's method can be used to "polish" the roots. 

The basic idea behind Newton's method is that if you can't solve f(x) = 0 for x, 
replace f with a simpler function F, namely, the best linear approximation to f(x) 
near some initial guess point xo. This approximation is F(x) =f(xo) +f'(xo)(x -xo), 
and we carn solve F(x) = 0 to get x, = xo -f(x0)/f'(x0), provided f'(x0) A 0. 
Repeating this with the new approximation xl to get x2 and so on gives us the 
iterative formula 

A xil) 
X,7+]. = X11 X ) 

'Our example functioni f(x) = x- a is indeed particularly simple, and this is important: if it were not so 
simple, we wouldn't be able to go anywhere near as far as we do. Hold on to your seat! 
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We will explore this formula with an extremely simple nonlinear function, namely 
f(x) = X2- a, in order to learn something about Newton's method (and some 
computer tools). It is clear that the zeros of f(x) = X2- a are just x = -a and x = 
- x/, so Newton's method is not really required for this problem. Even worse, we 
are later going to specify a = 1, so we will be using Newton's method to find the 
square root of 1! Our iteration is, for general a, 

2x x 2-a 
XZl4 + n - 2 x ( 1) 

or, mathematically equivalent but slightly less numerically stable, 

11 2 x x 
+ x 

A Maple program The following program, written in the computer algebra language 
Maple (see [1], for exalmple, for an accelerated introduction to Maple), will be used to 
compute iterates of Newton's method for the rest of this discussion. The routine 
normal just simplifies expressions. 

Newton = proc(a, xO, n) local xn; 
xn :- xO; 
to n do 

xn normal(xn- (xn^2 - a)/(2*xn)) 
od 

end: 

Numerical tests If we choose a = 2, then our function is f(x) = -2 and we are 
looking for F2, Choosing an initial guess of x0 = 1, the program Newton produces 
Table 1. 

TABLE 1 Newton iterates of f(x) = X 2-2. 

n X 1 error 

0 1 -1.0 
1 3/2 2.5 10' 
2 17/12 6.0- 10-3 
3 577/408 6.0. 10-6 
4 665857/470832 4.5.10-12 
5 886731088897/627013566048 2.5 10-24 

REMARKS 

1. The error repolted in the above table is the so-called "residual" error r1, =f( x,). 
If r,, is zero, then of course x,, is a root; if r,, is "small," then, in some sense, x1, 
is "close" to a root. This type of measure of accuracy is always available, even 
when the exact answer is not known. For "well-conditioned" problems it gives 
the same information as the difference between the approximate answer and the 
true answer; this problem is well-conditioned because x,, - a = (x2 - a)/(x1, + 
a ) = r,/(2F/Y) and so the relative error here (a = 2) is about (xn -a /)/ x/a 

rl /4. 
2. Exact arithmetic costs a lot. We notice that the length of the answer approxi- 

mately doubles each time; a quick calculation shows that the answer after 30 
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iterations would take a few gigabytes of memory to store. This is why people 
instead use arithmetic with a fixed number of decimals (i.e., floating-point). 

3. We can simplify our problem by the nondimeensionalization 2 u =X,/ x/a, at 
least for the purpose of understanding what is happening. Of course, for actual 
calculations we can't nondimensionalize by Va wlhich we don't know. If we use 
this conceptual scaling, then the Newton iteration becomes 

=t + 

This is exactly the same iteration but with a = 1. Thus the scaled iteration uses 
Newton's method to compute the square root of 1. But the relative error in x,, is 
(x - vaT)/ Va = t,, - 1 and so this iteration really does tell us something about 
Newton's method, and we will keep it in mind. It is easy to see that if 
till = 1 + el where ell represents the error after n iterations, then 

2 
e i__ _ _ 1 

2(1 +e) 2 

This is called quadratic convergence. Using this formula shows that after about 
30 iterations we will have about 1 billion digits of x[ correct, if we start with 
roughly one correct digit. 

4. If we convert these rational numbers to "continued fraction form" (using the 
Maple routine convert (17 / 12, confrac)) where a continued fraction is 
something of the form 

nO + 11 

n, + 1 
n2 + 1 

we see the quite remarkable patterns 

I = 1 

3/2 = 1 + 

17/12=1+ 1 
2 + 

2+ 1 
2 

577/408 = 1 + 1 

2+ 

+2 

where the length of the continued fraction is 2 ', and every entry is 2. This is the 
beginning of an interesting foray into number theory. 

2If a lias units, say square meters, this scaling removes them. 
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Symbolic initial guess If the program Newton given earlier had been written in C 
or FORTRAN, then calling it with a symbol (say g) for the initial guess would generate 
an error message. But here, 

> Newton (1, g, 1 ); 

in Maple, returns (g2 + 1)/(2 g). We can ask Maple to continue, giving the results in 
Table 2. 

TAB LE 2 Newton iterates for x2 -1 
with a symbolic initial guess, g. 

n xi? 

0 g 
1 g92 + 

I ~~~2g 

2 1 g4+6g2+1 4 g(g2 +1) 

3 1 g 8+ 28g6 + 70g4 + 28g2 + 1 
8 g(g4+6g2+ 1)(g2+ 1) 

In FIGURE 1 we plot the first few results from Newton. We see that these rational 
functions are trying to approximate a step function; as n increases, we see clear 
evidence that these functions converge. The moral of this section is that the error 
message that FORTRAN would have given us would have concealed an insight, namely 
that the result of n iterations of Newton's method is a rational function of the initial 
guess g. Further, we have learned that this rational function looks (for large n) rather 
like a step function with heights + Fa. Note that the graph in FIGURE 1 works for all a 
because the axes are scaled the horizontal axis is the g/ x/ axis and the vertical axis 
is the x /a axis. 

2 

1.5- 

1 

0.5- 

0 0 

-0.5 

-15 . .< /. \, -1.5 

-2 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

g 
FIGURE 1 

Newton iterates with a symbolic initial guess, plotted together. As n increases we must have 
XIJ Ca -> + 1, and we can see that the convergence is rapid near g/ Ca = + 1, as we expect. 
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Symbolic a Now let us choose instead xo = 1 (we will discuss this choice of initial 
guess in a moment) and look at the results from Maple if we input a symbolic a to the 
program. The first few of these are presented in Table 3. 

TABLE 3 Rational approximations obtained by using a symbolic a. 

n xn 

0 1 

1 2 + 2a~1 1 - ~~~~~~+ -a 2 2 
2 ~~~~~~~~1 1 +6a +a2 

4 1 +a 
1 1+28a+70a2+28a3+a4 
8 (1 + 6a + a2)(1 + a) 

When we plot these3, we get a sequence of rational (in a) approximations to a, as 
is quite evident in FIGURE 2. 

6 

X3 - 

2- 

1 

0 1 2 3 4 5 6 7 8 9 10 
a 

FIGURE 2 
The first few iterates of Newton's method on f(x) = x- a with symbolic a give quite good 
rational approximations to 

REMARKS 

1. Nondimensionalization shows that choosing xo = 1 is perfectly general. Put 

xii = xOVu in equation 1, and simplify to get 

3Both FIGURE 1 and FIGURE 2 were actually prepared using Matlab, not Maple, because Matlab plots 
look slightly nicer; moreover, the graphs were generated by giving a vector of g values and a vector of a 
values to a Matlab implementation of Newton's method,, much like the Maple symbolic version. 
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This is just the iteration for finding the square root of a/x'. Therefore, the 
graph in FIGURE 2 differs from the graph of the approximations we would get 
with some other initial guess (say xo = 2) only in the scale of the axes-in 
particular the shape of the curves remains the same. If we label the y-axis with 
x0 where 1 is now, and likewise 2 xo for 2 and so on, and label the x-axis with xo 
where 1 is now, etc., then FIGURE 2 represents the first few iterates of the general 
case. That is, all the curves with general initial guess collapse onto the same 
curve. This shows the true power of nondimensionalization. 

2. We can replace normal in the routine Newton with a call to Maple's series 
commaland, and execute Newton's malethod in the domain of power series. 
Quadratic convergence in this domain means that the number of correct terms 
in the power series doubles each time. 

3. We can show with Maple that the error in our rational functions of a above are 
proportional to (a - 1)2k; for example, after three iterations the error is 

)2 1 (a -i) 8 
f3(a) -a 64 (1 +6a+a a2)2(1 +a )2 

As before the difference between f3(a) and 4V will be about 1/(24V) times 
this. 

4. We can convert the rational approximations in Table 3 to continued fraction 
form; indeed these approximations are one step towards approximation theorty 
which underlies much of scientific computing. 

5. Again FORTRAN would give us an error message if we tried this in that language. 
We begin to suspect that whenever a language gives us an error message, there 
is something to learn. 

Chaotic dynamics 

Now we choose a = - 1 and see what happens. We are trying to find an x such that 
x2 + 1 = 0, and if we start with a real x0 we are doomed to failure. However, the 
failure is very interesting. 

A few experiments show us that some initial guesses (xo = 0, xo = 1, xo = 1 - 2, 
etc.) lead to division by zero. We ignore these minor annoyances. A few more 
experiments show that most initial guesses don't lead (immediately) to division by 
zero, but rather wander all over the x-axis, without showing any kind of pattern. 

Since the x, appear random in this case, we consider looking at a frequency 
distribution of them. We divide the axis up into bins-the bins are chosen according 
to a rule given by an advanced theory, namely a rule depending on the theoretical 
probability density function-and count the number of x, that appear in each bin. 
The results appear in Table 4. 

To explain the theoretical probability density function would take us to the 
boundaries of ergodic theory, which is a "main artery," if you will, of statistical 
mechanics, dynamical systems, and indeed probability theory. 

Symbolic n If we call the Maple program not with symbolic a or xo but rather with 
symbolic n, the number of iterations, we get the error message 

Error, (in Newton) unable to execute for loop. 
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TABLE 4 Frequency distribution for x,, where xn+l = (x - 1/x,,)/2 
and xo = 0.4 (10,000 iterates). The bin boundaries bk, 0 < k < 10 are 
chosen so that bo = -00 and 'k 11/(7(x2 + 1)) dx = 1/10. According to 
theory, there should be roughly the same number of x, in each bin. 

number of x, 
k bk in (bkl, bk) 

1 - 3.0777 1001 
2 - 1.3764 999 
3 - 0.7265 1006 
4 - 0.3249 1000 
5 0.0000 986 
6 0.3249 1000 
7 0.7265 1007 
8 1.3764 980 
9 3.0777 986 

10 00 1035 

As we have discovered, an error message indicates that we have something to learn. 
Maple might not be able to do this problem for a symbolic n, but we carn (in this 
case). Assume first that ao > 1 (this corresponds to x0 > xa ). Put u, = coth 01. (The 
hyperbolic furnctions sinh 0 = (exp( 0) - exp(- 0 ))/2, cosh 0 = (exp( 0) + 
exp(- 0))/2, tanh 0 = sinh 0/cosh 0 and so on, are strongly related to the ordinary 
trig functions.) We have 

cothO i ( csh 0, sinh 0, coth + 1 =11+1 =2 sinh 0,, cosh or ) 
cosh 2 O7 

sinh2Q 

= coth 2 0, 

where we have used cosh2 0 + sinh2 0 = cosh 2 0 and 2sinh 0 cosh 0 = sinh 2 0 to sim- 
plify. Taking coth -' of both sides, we see Q0 + = 2 0, which is easily solved to get 

On =2L 'o 

Therefore u,, = coth(21'00), if ao > 1. 
For the case when 0 < no < 1, we note that we will immediately have u1 = (ao + 

1/uo)/2 > 1 (for example, by elementary calculus we see the minimum of t1 occurs 
when uo = 1). Thereafter the previous analysis applies. The case of uo < 0 is symmet- 
ric to the positive case. So we can say utt = coth 2'-101, regardless of what uo is. 

Similarly, it is an elementary exercise to show in the complex case, with a= -1, 
that u =cot ( 0, ) gives 0,+ = 2 0, or 

u = cot (2 'o0). 

This lays bare all of the chaotic dynamics of this iteration in the complex case. See [3] 
for more discussion of this case. 

REMARKS 

1. Now we have the solution for symbolic n, we can answer the question "What do 
you get if you do half a Newton iteration?" For this problem, we get U3/2 - 

coth(V2 0,) (by definition). This doesn't have any apparent application, but in 
more complicated dynamical systems finding such an interpolation is veiy useful 
indeed. 
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2. The Lyapwnov exponent in the chaotic case is In 2. The formula (3) also tells us 
how to find the theoretical probability density fuinction alluded to earlier. 

3. No "fractals" appear in this problem, unless it is on the imaginary axis (wllere 
the chaos is). However, looking at Newton's method for solving f(x) = x3 - 1 = 
0, we get fractals in C immediately. See [3], and the other papers in that same 
issue of the College Mathemcatics Journal. 

4. The "asymptotics" of coth2`'00 tell us how quickly the iterates approach 1. By 
Maple, 

Ull = 1 + 2e-1 2''01 + 2e- 22''2 + o(eW3-20) 

which tells us everything about how fast tat, approaches 1 (and by extension how 
fast x,, approaches a). 

Concluding remarks 

In this discussion we have stepped outside the normal route to mathematics. By asking 
just slightly different questions about Newton's method than is usual in a calculus class 
-using a very simple example, just trying to understand it better-we have used or 
discovered links to nondimensionalization, numerical analysis, complexity theory, 
continued fractions, approximation theory, series algebra, asymptotics, ergodic theory, 
and dynamical systems (chaos and fractals). One hopes the student will be stimulated 
to search out other references on these subjects (one might begin with the references 
in [3], and the other papers in that same issue of the College Mathemcatics Journal). 

The discussion in this paper also suggests that it might have been premature to drop 
Newton's method (for computing the square root) from the high-school curriculum, as 
it has been dropped in some districts, merely because calculators can compute square 
roots with the press of a button. The important thing may not ever have been to 
compute a square root, but rather to provide a nice introduction to Newton's method, 
from which "central trunk" we may move on to other significant areas of modern 
mathematics. 

Probably the most significant concept used in this discussion is nondimensionaliza- 
tion. From a practical viewpoint, it is an invaluable tool in the management of large 
numbers of variables; from the pure mathematical viewpoint it is an overture to the 
theory of symmetry, itself a vigorous and powerful branch of modern mathematics. 

But even just on its own, Newton's method is an extremely important and 
well-studied tool in applied mathematics, used every day for the solution of systems of 
nonlinear equations. It is surprising how easy it is to find new questions to ask about 
it. 

Acknowledgment. Many of these ideas are due to Charles M. Patton, and I first heard them in his 
workshop at the 4th International Conference on Technology in Education, in Portland, Oregon, 1991. This 
paper also benefited from discussions with Peter Poole, David Jeffrey, and Bob Bryan. 
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N OTE S 

Differentiating Among Infinite Series 

RICK KREMINSKI 
Texas A&M University-Commerce 

Commerce, TX 75429 

Introduction Calculus students often spend a lot of time deciding whether or not a 
series like ET 1/j3/2 converges. But relatively little time is spent investigating the 
numerical values of such (convergent) series. Can't we just use a computer, many 
students wonder, and keep adding more and more terms until we "see" what the limit 
is? For many (rapidly converging) series, this logic is, of course, essentially valid. But 
there are also many series wlhose partial sums converge very slowly. For E1 l/j3/2, for 
instance, the 6-digit accuracy we will get below from one of our estimation formulae 
would be attained by a partial sum only after 160 billion terms were added. As a more 
dramatic example, we will consider the excruciatingly slow convergence of 
E2 1/(j (ln j)2); not even the addition of 1010000 terms would match the five digits of 
accuracy we will obtain by our first, most basic method. Using our formulae, we can 
accurately estimate the values of such slowly convergent series, provided we have a 
minute's time and adequate computing power-a generic scientific calculator will do 
just fine. Our formulae, moreover, are based almost completely on something calculus 
students are familiar with ([1], [2], [3]): 

F(j + h) -F(j - h) F_ 0) 

Many students are surprised to learn that (1), something useful in estimating deriva- 
tives, can be used to estimate the value of certain series (including many alternating 
series). In this note, we first deduce some series estimation formulae, then illustrate 
their use in a few examples, and then find other formulae based on generalizations of 
(1). Next, we give a brief discussion of error bounding. Finally, we include some 
comments on approximating Euler's y constant. 

Derivation of some summation estimation formulae Consider a convergent 
series of the form E f(j), where we assume that f is continuous and integrable on 
some interval of the form [rn,oo). Let a,. denote f(j) and let f denote an antiderivative 
of f. Of course, f is only well-defined up to a constant (for instance, if we consider 
E i/j2, then f(j) = 1/j2 and F(j) = - l/j + C). Now F'(j) =f(j) = aj is approxi- 
mated by (1); setting h = 1 and letting j be k + 1, k + 2, etc., we have 

F(k + 2) -F(k) 2ak+l 
F(k + 3) -F(k + 1) = 2 ak+2 

F(k + 4) -F(k + 2) = 2 ak+3 (2) 
F(k + 5) -F(k + 3) = 2ak+4 

F(k + 6) -F(k + 4) 2ak+5 

42 
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Observe all the cancellation that occurs when we add the first p approximate 
equations. The result is 

F(k + p + 1) + F(k + p)-F(k + 1)-F(k) = 2(ak+l + ak+2 + ", +ak+p) 

Note that the left side is indeed well-defined, even though F is only defined up to a 
constant. Taking the limit as p tends to infinity (which really amounts to adding up all 
the approximate equations in (2)), we see that a quantity like F(oo) + F(oo) remains on 
the left hand side of the expression above. To avoid cluttering up our results, we agree 
to choose the constant of integration in F so that F(oo) = 0 (this is possible since f is 
integrable). Therefore (2) ultimately yields 

-F(k + 1)-F(k) = 2(ak+l + ak+9 + ak+3 + (3) 

Equation (3) provides us with a way to approximate the "tail" of the series E ac. Let S 
denote E' ac and Sk denote the partial sum E? < k aj, so that S-sk = ak+l + ak+2 + 
ak+3 + --- is the truncation error (or "tail") when Sk is taken as an estimate for S. 
Rearranging (3) and dividing by 2 leads to our first summation formula: 

S Sk_ F(k+1) +F(k) 

for F vanishing at oo. 
Before supplying examples, we observe that a similar approximation method can be 

obtained as follows. Using (1), but this time with h = 1/2 instead of h = 1, gives 

F(k + 3/2) -F(k + 1/2) ak?+I 
F(k + 5/2) -F(k + 3/2) a ak+2 

F(k + 7/2) -F(k + 5/2) a ak+3 
F(k + 9/2) -F(k + 7/2) a ak+4 

Again, we add these approximate equations and get almost complete cancellation on 
the left hand side. Heuristically, F(oo) - F(k + 2) S - Skt; this gives our second 
approximation formula: For F vanishing at oo, 

S S1k -F(k + 1/2). (5) 

Example. We estimate S = I1 1/j2. For simplicity, we'll use k = 20; any reader 
with a calculator can implement both (4) and (5). Then 

Sk S20 + + + + 400 = 1.596163.. 

To avoid further use of ellipses in truncated numerical values, we'll use "(ad)" to 
denote "accurate to all digits displayed"; so S20 = 1.596163(ad). Now since f(j) = 1/j2, 
we have F(j) = -1/j, so equation (4) yields 

S = S2 -1/21+ -20 0 =1.64497276 (ad). 
2 

Similarly, (5) yields 

S S2-20 +1/2 =1.6449437 (ad). 
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How good are these approximations? It is well known from Fourier series or 
complex analysis (or by purely elementary means involving trigonometric identities, as 
in [4]) that Eo 1/j2 = T2/6 = 1.64493406(ad). (We chose this series as our first 
example because, for students, we can view the exercise as really trying to estimate 
iT.) From the sum's true value we find that the absolute error in our use of (4) with 
k = 20 is roughly 3.9 X 10-5; the absolute error using k = 20 in (5) is roughly 
9.7 X 10-6. (We shall see below that error analysis predicts that for a generic f, the 
absolute error in (4) is expected to be about four times the absolute error in (5).) A 
standard argument using the integral test (exercise!) indicates that for a partial sum of 
S = El 1/j2 to be within 9.7 X 10-6 of S, one would have to add over 100,000 terims. 
Implementing (5), we achieved this accuracy with only 20 terms. 

Generalizations using more accurate estimates of derivatives Since (1) con- 
cerned first derivatives, we can ask whether other, more accurate estimates for the 
first derivative also lead to summation schemes. (Later, we will generalize in a 
different way, by considering numerical estimates for higher order derivatives instead 
of the first derivative.) 

Consider the following more accurate estimate for F'(k), analogous to (1) (for 
further details, see either [6] or Section 4.2 of [5]). 

-F(j + 2h) + 8F(j + h) - 8F(j - h) + F(j - 21) =F'( ) (6) 
12h 

Letting h = 1 and j = k + 1, k + 2,..., we have 

-F(k + 3) +8F(k + 2) -8F(k) +F(k-1) = 12ak+l 
-F(k + 4) +8F(k + 3) -8F(k + 1) +F(k) 12ak+2 

-F(k+5)+8F(k+4) -8F(k+2)+ F(k+ 1) - 12ak+3 

-F(k+6)+8F(k+5) -8F(k+3) + F(k+2) 12ak+4 
-F(k + 7) +8F(k + 6) -8F(k + 4) + F(k + 3) 12ak+5 

Adding the approximate equations and again choosing F to vanish at infinity leads 
to 

F(k + 2) - 7F(k + 1)- 7F(k) + F(k -1) = 12(ak+1 + ak+2 + ), 

or, equivalently, 

S sk + F(k + 2)-7F(k + 1)-7F(k) + F(k-1) (7) 
S~~~Sk+ ~~12 

Applying (7) to E1 1/j2 with k = 20 yields S = 1.64493384(ad); the absolute error is 
roughly 2.2 X 10-7. To suggest how the error is affected as k increases, we observe 
that with k = 60, (7) yields S = 1.6449340658(ad), representing an absolute error of 
roughly 9.9 X 10-10. Summing 60 terms and adding some correction terms achieves 
an accuracy that a partial sum alone would achieve only after summing more than one 
billion terms. 

An alternating series estimate Let A denote the series E,(- i)j+1'a, = a1 - a2 + 
a3 - . .. and let Ak denote the partial sum Ek(- )j+ Iaj. Assume the sequence (a) 
tends to zero. Let f denote a continuous function, vanishing at infinity, such that 
f(j) = aJ. (Interestingly, we no longer need f to be integrable on some interval of the 
form [in, oo), even though this was crucial to the derivations of (4), (5), and (7).) Let F 
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be an antiderivative of f. Begin with the system of approximate equations in (2), and 
change the signs in every other equation: 

F(k + 2) -F(k) 2ak+l 
-F(k + 3) +F(k + 1) = -2ak+2 

F(k + 4) -F(k + 2) 2ak+3 
-F(k + 5) +F(k + 3) -2ak+4 

Adding p of these approximate equations, where p is odd, gives F(k + p + 1)- 
F(k + p) + F(k + 1) - F(k) on the left hand side. But by the mean value theorem 
F(m + 1) - F(m) = F'(Q,1) for 6)m E [in, m + 1]. Since F' =f and f tends to zero at 
infinity, F(k + p + 1) - F(k + p) must tend to zero as p gets large. Taking the limit 
as p tends to infinity leaves F(k + 1) - F(k) 2(ak+l - ak+2 + ak+3 - ak+4 + "' )' 
But this means that F(k + 1) - F(k) 2(A - Ak), provided k is even. Hence, for 
even k, 

A=A + F(k + 1) - F(k) (8) 

Before implementing this approximation scheme, we will obtain a more accurate 
summation scheme for alternating series using the more accurate estimate of F', 
discussed above. In the spirit of (7), we have 

- F(k+3)+8F(k+2) -8F(k)+ F(k-1l) 12ak+l 

F(k + 4)-8F(k + 3) + 8 F(k + 1)- F(k) ~ -12ak+2 
- F(k+5)+8F(k+4) -8F(k + 2) + F(k + 1) 12ak+3 

F(k + 6)-8F(k + 5) +8F(k + 3)- F(k + 2) 12a+4 
-F(k + 7) +8F(k + 6) -8F(k + 4) + F(k + 3) 12ak+5 

Once again, adding the approximate equations yields much cancellation, leaving 

F(k- 1) -9F(k) + 9F(k+ 1) -F(k + 2) 12(ak+1 ak+2 + ak+3 -ak+4 + )- 

Hence we obtain, for even k, 

A Ak + F(k-1)-9F(k) +9F(k+ 1)-F(k+ 2) (9) 
A~~~Ak+ ~~~12 

Example. The sum 1 - 1/3 + 1/5 - 1/7 + is exactly ir/4, or .7853981633(ad). 
Here f(x) = 1/(2 x - 1), which is clearly not integrable (so an antiderivative F could 
not be chosen to vanish at infinity). Nevertheless, (8) with k = 20 yields S = 
.785408(ad), for an error of approximately 1.0 x 10-5. (The partial sums would not 
have this accuracy until over 3000 terms were summed.) Similarly, (9) with k = 20 
yields S = .7853981009(ad), for an absolute error of roughly 6.2 X 10-8; achieving 
this accuracy with partial sums alone would require more than 4 million terms. 

Generalizations using higher-order derivatives We use the following numerical 
estimate for the second derivative of G: 

G(k+h)-2G(k) + G(k -h) ' G"(k). (10) 
h2 
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One could motivate this to a calculus student as a double use of (1): 

G(x + 2H)-G( x) G( x)-G( x- 2H) 
Gl(x) G'(x+H)-G'(x-H) 2H 2H 

2 H 2H 

G(x + 2H) -2G(x) + G( x-2H) 
4H2 

With H = h/2, (10) follows. (A less ad hoc derivation of (10), along with error term, 
is given below, but it requires familiarity with Taylor series.) 

Consider then a convergent series of the form Ef(k), where we assume f is 
continuous and, once again, integrable on [m, oo) for some m. As before, we denote 
f(k) by a1k Since f is integrable, it has an antiderivative, F, vanishing at infinity. Now 
let G be an antiderivative of F, and let bk = G(k). (Of course, G(k) is defined only 
up to a constant.) Now G"(k) =f(k) = a1k is approximated by (10), and, with h = 1, 
we have the following approximate identities: 

bk-2bk + I +bk+2 = ak+1 

bk+l -2bk+2 + bk?+3 ak+2 
bk+2 -2bk+3 + bk+4 = ak + 3 

bk+3 -2bk+4 +b1k+5 = ak+4 

. . . . . . . . . . . . 

Adding these infinitely many approximate equations, again we obtain almost complete 
cancellation on the left side. (The terms of the form "b0. ?+I - boo>" indeed disappear. 
Namely, b,,1+? - b.,. = G(m + 1) - G(n), which by the mean value theorem is G'( a,), 
which in turn is F(a,,); and this vanishes at infinity by hypothesis.) We obtain 

-bk?l a 1;+1 + ak?9 + ak+3 + **, providing yet another way to approximate the 
"tail" of E ak. This simplifies to bk- bk+l S - Sk, o1 

S -sk+bk-bk+?l. (11) 

Comparing the methods To compare our methods we apply them to two sample 
problems. 

Problem 1. Find El 1/j32 to 3 digits past the decimal point. 

Solution. After fifteen or twenty seconds of furious computation, a programmable 
calculator can conclude that the partial sum siooo is 2.549145(ad). Unfortunately, as 
an approximation to the infinite series, this is not even correct to 1 digit past the 
decimal. In fact, to attain 3-digit accuracy by direct summnation would require over 28 
million terms. Using (11) with k = 10 yields 2.612725(ad). The true value is 
2.6123753(ad), so (11) led to an absolute error of approximately 3.5 x 10-4. With 
k = 20, (11) yields 2.612441(ad), (4) yields 2.612506(ad), (5) yields 2.612408(ad), and 
(7) yields 2.6123747(ad). (We have underlined various portions of the values for ease 
in comparison.) 

Problem 2. Find E2 1/ j(ln(j))2, to 4 digits past the decimal point. 

Solution. Direct summation will not achieve this accuracy until more than 1010000 
terms have been added; this is a very slowly convergent series. (At this point in class 
we observe that there are considerably fewer than 10100 quarks and neutrinos, i.e., 
fewer than 10100 "things," in the observable universe.) The true value is 
2.109742801(ad). Using (11) with k = 30 yields 2.109754(ad), (5) yields 2.109748(ad), 
(4) yields 2.109767(ad), and (7) yields 2.1097427(ad). 
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Error bounding We now develop an error bound for (4), and leave as exercises the 
analogous derivations of error bounds for our other formulae. Beyond standard ideas 
from calculus, we require only the (Lagrange form of the) Taylor series error formula, 
which can be found in almost any calculus text (see, e.g., [2] or [3]). 

Assuming that F"' exists, we have 

F(j + h) = F(j) + F'(j)h + F"(ji) 122 + F3 !)3 (12) 

and 

____ 2 F "'f( ~2) 11 F(j - h) = F(j) - F'(j)h + F(j)h2- 3! (13) 

where E E [j, j + h] and ( E [j - h,j]. Subtracting equation (13) from (12) and 
dividing by 2h yields 

F(j + h) - F(j -12) = F') + F"'( h 3 + F"'( 2 ) 13 (14) 
2h1- 3!2h . (14 

(Note in passing that if we instead add the equations, we essentially arrive at (10), but 
now with a precise expression for the error incurred in its use.) Since derivatives 
satisfy the intermediate value property, the average of two F"' values is another F"' 
value. Thus we can rewrite (14) as 

F(j + h)-F( j-h) = F'( ) + F i36 
2 

(15) 
2 h - ()+ 3! (5 

Therefore the error "true first derivative - estimate in (1)" is - F"'( )h2/6. (We also 
report, for future reference, that the analogous error for (6) is +PF'5)()h4/30. For 
details, see Section 4.1 of [5].) 

Now we apply (15), our formula for the error in using (1), to each of the 
approximate equations in (2). We can replace each "-" by "= ", provided that 
-2 F"'( ( ,)/6 is attached to the left side of the int" equation; here (M E [k + in - 1, k 
+ in + 1]. Then the error in using (4) can be expressed as 

s-(Sk F(k +1) F(k)) f"( . (16) 

Before simplifying (16), we make two remarks. 

* From (16) alone, we see that if f" > 0 on [k, o?) (as when f(j) = l/jP for p > 1) 
the error is negative, so the approximations all exceed S. Furthermore, we see 
that as k increases, the estimates fromi (4) approach S monotonically from above. 
(And whenever f (4) > 0 on [ k, o?), the error formula for (6) that we mentioned 
above implies that as k increases, the estimnates from (7) should approach S 
monotonicallyfrom below.) For examples illustrating these phenomena, look back 
to any of the series where (4) or (7) were implemented. 

* Had we kept the dependence on h, (16) would have a factor of h2 on the right 
side. This explains why (4) and (5) had errors differing by a factor of about four in 
the numerical example on page 44, we used h = 1 in arriving at (4), but used 
h = 1/2 in deriving (5). (Of course, the error in using (4) will not be precisely 
four times the error in (5), and will depend somewhat on f; the 's arising in (16) 
will in general not be the same as those arising in the analogous sum for the error 
in (5).) 
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We now sketch how one could bound the sum in (16). (A similar discussion, but 
with more details, appears in [7].) Consider the sum in (16) as two Riemann sums, 
one for fir f"/12 and the other for fiZ,?I f"/12. (Two Riemann sums arise naturally, 
with rectangle width 2, one sum for in even and the other for in odd.) For situations 
where f" is positive and decreases, as in E' 1/jP for p > 1, the two Riemann sums 
are less than right sums for the integrals fkf-2 f"/12 and r f"/12 respectively. 
These integrals are readily evaluated, and we conclude that one (crude) bound for the 
error in using (4) is 

| S- 'Sk _ F( k + 1) + F( k) )|< lf(k k-2) +f (k k-1)| 

for the situation where f" is positive and decreasing on the interval [k - 2, oo). This 
bound can be improved; for one approach, see how the analogous error term in [7] is 
treated. We leave bounds for (5), (7), (8), (9), and (11) as exercises for the reader. 

The key to our estimation formulae is that both (1) and (6) express F' in terms of a 
weighted sum of F-values at a finite number of equally spaced points. The error 
bounding of (4) that we just completed provides hints for the general case. Omitting 
details, if the error in the approximation for F' is proportional to P"), then the error 
in the associated summation formula will essentially be proportional to f( In -2) (k). 
From the usual point of view in numerical analysis, one differentiation approximation 
method for F' is often considered "better" than another if its error term depends on 
a larger power of the stepsize h, since h is usually chosen to be a fixed number close 
to zero. But from the viewpoint of developing summation approximations, one 
differentiation method is "better" than another if its error depends on F ...) for a 
larger value of in. In this case, the error in the associated summation formula is 
proportional tof(In -2), and for many slowly converging series, higher derivatives of f 
tend to zero much more rapidly than lower order derivatives. In this sense (6) is a 
better differentiation method than (1), since the respective errors depend on F(5) and 
F . Still better differentiation methods can be obtained by applying Richardson 
extrapolation to certain Taylor series expansions, as described in Chapter 4 of [5]; see- 
also [6]. It is a routine matter to develop corresponding summation approximation 
schemes for any of these better differentiation methods. 

A final example: Euler's constant Let y.. = 1 + 1 + 1 + + -ln in. Euler's 
constant y is defined as limrn,00, Calculus methods can be used to show that y 
exists and is less than 1. (See, e.g., [8].) The constant y arises, among other places, in 
infinite product formulas in complex analysis, including in the F function [9]. 
Computing its value from the definition is notoriously ineffective; Y20 = 

0.60200738(ad), y1000 = 0.57771558(ad) and (over 50 seconds later on a 120Mhz 
Pentium, running Mathematica) y100000 = 0.57722066(ad). We will see that even this 
last value is barely within 5 x 10-6 of -y. To apply our methods to speed the 
convergence of the y,), begin with 

(Ypk= 2 3 k) k + I +k + 2 + + k + p -ln(k + p). 

Now consider (2) in the situation where a1- =f(j) = 1/j and F(j) = lnj. Adding the 
corresponding p approximate equations in (2) gives 

ln(k+p+1) +ln(k+p) -ln(k+1) -ln(k) 1 1 1 
2 k+ + k+2 k+p 
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So, after some algebra, 

k lt/ + I ln( k + p + 1) - ln( k + p ) 
'Yp?+k 

~~ 
Yk 2 2 

Taking the limit as p -- oo yields 

2 + I (17) 

Using k = 20 we get y = 0.57761230(ad). In fact, y = 0.57721566(ad); so while Y20 
differs from y already in the first digit past the decimal, our estimate is accurate to 
within 0.0004. 

We can do better. Using the approximate system that led to (5), the reader can 
check that y = Yk + ln (k) - ln (k + 1/2). (Coincidentally, exactly the same approxi- 
mation method was analyzed in [10].) For k = 20, this method yields y 
0.57731477(ad), for an error of about 0.0001. This represents approximately one 
fourth the error we obtained from using k = 20 in (17), as we expect from earlier 
discussion. Finally, using the system just prior to (7), we obtain 

y(+ln(k) + ln(k + 2) - 71n(k + 1 - 71n(k) + ln(k - 1) (18) Y= Yk + In (k) 4 ~12 ..(8 

Using k = 20 in (18), we get y 0.57721452(ad), with an error of about 10-6. Notice 
how this estimates y more accurately than does y10ooooo 

Final remarks The error bounds that our methods produce, of the form of a 
constant times f( n -2) (k), are comparable to error bounds that occur in summation 
estimation based on the Euler-Maclaurin summation formula (cited in [7]). Such 
summation formulae require values of f's derivative as well as f's antiderivative in 
producing their estimates of the sum-whereas our formulae only require knowledge 
of f's derivatives in error bounding (and not in the summation formulae themselves). 
Still, it is likely that there is some underlying relation between our methods and 
Euler-Maclaurin-based methods-if, in the latter, derivatives are replaced by finite 
differences. The precise relation between the two approaches remains to be explored. 

Bibliographic remarks Since this article is based on numerical differentiation, it 
complements [71, where E f(j) is estimated using numerical integration. Readers who 
wish to examine other, recently proposed, methods of accelerating the convergence of 
series (and methods of estimating Euler's y constant) might begin with the references 
in [7]. The present approach also shares something with the methods in [11] and [12]. 
For another interesting approach to accelerating convergence of alternating series, see 
[13]. In another direction, [14] discusses nonlinear methods of accelerating series 
convergence; all the methods we have discussed have been linear in the terms ak of 
the series. 
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Thanks also to Mathernatica, without which the author doubts that he would have discovered any of the 
approximation schemi-es discussed here. 
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Uniqueness of the Decomposition 
of Finite Abelian Groups: 

A Simple Proof 

F. S. CATER 
Portland State University 

Portland, OR 97207 

We shall use additive notation for abelian groups. The order of a group G is denoted 
GI and the cyclic subgroup generated by c E G is denoted (c). Let Z, denote the 
additive group of integers modulo n. 

Among the results included in many first courses in abstract algebra is the 
Fundamental Theorem of Abelian Groups: 

THEOREM 1. Let G be a finite abelian group. Then there exist cyclic groups P1, 
P2, . . ., Pr, of respective orders ml, m2, ... . ml > 1, such that md divides mj-1 for 
j = 2,..., r and G = P1 E P2 E . P. 

There is a variety of proofs of Theorem 1; for example, see references [1], [2], [3], 
[4], [6], and [7]. Actually, there is more to the Fundamental Theorem: 

THEOREM 2. The integers r and ml, mr2, ... m, in Theorem 1 are uniquely deter- 
mined. That is, if it is also the case that G = ED Q2 E . Qs I where the 

Qi are cyclic subgroups such that I QjI divides IQ11 I for j = 2,. .., s, then r = s and 
IPi I = IQ1 forj = 1,2,. .., r. 
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THEOREM 2. The integers r and ml, mr2, ... m, in Theorem 1 are uniquely deter- 
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Qi are cyclic subgroups such that I QjI divides IQ11 I for j = 2,. .., s, then r = s and 
IPi I = IQ1 forj = 1,2,. .., r. 
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Theorem 2 demonstrates, for example, that Z32 E Z8 E /4 E Z4 and Z32 E /8 E 

/8 E /2 are not isomorphic, even though they have the same number of elements. 
Likewise, Z27 E /9 E Z3 is not isomorphic to /27 E /27 

Unfortunately, the proof-and sometimes even the statement-of Theorem 2 is 
often omitted from first courses, because the usual proofs depend on developing a 
great deal of machinery. The main purpose of this note is to provide a simple proof of 
Theorem 2, one that depends only on results usually proved in a first course in 
abstract algebra. Along the way, we prove some other useful facts about finite abelian 
groups. 

The key to proving Theorem 2 is the following theorem, which does not seem to be 
included in most abstract algebra texts (see [5]). 

THEOREM 3. Let H be a subgroup of a finite abelian grouip G. Let G = P1 ( P2 
.. P, and H = Q, ( Q2 E ... E Q, be the decompositions of G and H described 

in Theorem 1. Then s < r and IjQI divides I PjI for j = 1, 2, ..., s. 

Theorem 3 shows, for example, that the group /7 E /4 E Z4 cannot be isomuorphic 
to a subgroup of 8 D 4 E 2E 2 2. Likewise the group Z27 E 9 E9E3 
cannot be isomorphic to a subgroup of Z27 E /27 E /3 E /3 E /3' 

The proof of Theorem 3 uses the following facts, whose proofs can be found in 
most beginning abstract algebra texts (such as [1] and [9]). 

Fact 1. Any subgroup of a cyclic group is a cyclic group. 

Fact 2. Let C be a finite cyclic group, let n be a positive integer, and let 
nC = {nglg E Cl. Then nC is a subgroup of C; moreover, nC = (0) if and only if ICI 
divides n. 

Fact 3. If n divides the order of the cyclic group C, then C has a subgroup of 
order n. 

Fact 4. If Go = G1 E G2 E . CD, G n is a positive integer, and inGC 
{ng lg E Gi}, then mG0 = (mG1) E (rnG2) E . E G,). 

We will eventually use Theorem 3 to prove Theorem 2. 

Proof of Theorem 3. The proof is by contradiction. Either let there be an index j for 
which 1Q11 does not divide IPj1, or let s > r. 

Case 1. Let J be an index for which I QjI does not divide I PJ I. We will define a 
subgroup we will call G1, and make estimates of its order. From these estimates the 
required contradiction will emerge. Put n = I Pj1|, and m = I nQ1jI. Then m > 1 by 
Fact 2. Put G1 = {x E nGlmx = 01. Clearly, G1 is a subgroup of G. The strategy is to 
find two inequalities involving G1 I that lead to an inconsistency. Now 

nG = (nPj) E (nP2) E . (nP,.) 

by Fact 4. But nP, = (0) if j > J, by Fact 2. It follows that 

nG = (nP1) E (0tP2) E . (nPj1). (1) 

Let x be any element of G1. Say x = x1 + x2 + +Xj11 where x E nPj. Then 
0 = inx = mnx1 + rnx2 + + mnxJ-1 

and hence nx1 = mnx2 = = mx11 = 0 because the nP, form a direct sum. Thus 
x eG1 forj= 1,2,..J-. But x was arbitrary in G1, so 
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Moreover, (nPj) n G1 is cyclic, by Fact 1. For a generator g of (nPj) n G, we have 
mng = 0, so I (nPj) n G1 I <mn. From (2) we conclude that 

I G,I<inzJ- 1. (3) 

Each subgroup Qi (i = 1,2,... ,J) contains a subgroup T1 isomorphic to Q, by 
Fact 3. Thus nTi -nQj. But InQjI = m, so mn(nT) = rn(nQj) = (0) by Fact 2, and so 
each nT c GC1. Hence 

(nTj) ED (0T.) 0 ... 0 (nTj) c Gl. (4) 

Each nT, has order in, so from (4) we deduce 

IGC1 I>nJ. (5) 

From (3) and (5) we deduce that mnJ < mJ -, which is inconsistent with the fact that 
m > 1. This completes the proof of Case 1. 

Case 2. Let r > s. The argument is like the proof for Case 1, but with J = r + 1 
and n = 1. We leave the rest to the reader. This completes the proof of Theorem 3. 

Proof of Theorem 2. Put H = G in Theorem 3. Then r > s and IQjI divides I Pj for 
j = 1, 2,. . ., s. If we reverse the roles of the two decompositions of G, we find that 
s> r and that IPiI divides IQiI for i = 1,2,...,r. Finally, r =s and I Q= Pjl for 
j= 1,2,...,s. 

Remark. Observe that prime integers did not enter our arguments, although they do 
enter the proof of Theorem 2 in most of our references. 
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Swapping Hats: A Generalization 
of Montmort's Problem 

GABRIELA R. SANCHIS 
Elizabethtown College 

Elizabethtown, PA 1 7022-2298 

Montmort's Matching Problem The following problem was first proposed by the 
mathematician Pierre Remond de Montmort [7] in Essay d'Analyse sur les Jeutx de 
Hazard, his 1708 treatise on the analysis of games of chance: 

Suppose you have a deck of N cards, numbered 1,2,3,.. ., N. After 
shuffling, you draw one card at a time, without replacement, counting out 
loud as each card is drawn: "1, 2,3,... ". What is the probability that there 
will be no coincidence, i.e., no drawing of a card bearing the number just 
called out? 

In Montmort's version of the problem, the deck had 13 cards, so the game was 
called Treize, French for thirteen. The game has also been called Rencontres 
(Coincidences), or Montmort's Matching Problem. 

Montmort discusses a generalized version of this problem in his correspondence 
with Nicholas Bernoulli (1687-1759) from 1710 to 1712; these letters are included in 
the second edition of Montmort's work on gaming [8]. In the generalization, N cards 
are drawn from a deck of Ns cards; there are s cards bearing each number from 1 to 
N. Again, one seeks the probability of at least one coincidence, for which Montmort 
and Bernoulli find a formula. 

Other mathematicians who have generalized and discussed this problem include 
de Moivre [6], Euler [1], Lambert [4], Laplace [5], and Waring [11]. For a more 
extensive account of the histoiy of this problem, see [2, pp. 326-345] and [10]. 

Calculation of P,,,(N) Montmort's Matching Problem is often posed in the follow- 
ing more amusing form: N men, attending a banquet, check their hats. When each 
man leaves he takes a hat at random. What is the probability that at least one man gets 
his oWnl hat? 

If there are no such coincidences, the next best thing might be a two-way swap. So 
one might ask for the likelihood of no matches but at least one swap, or the likelihood 
of no matches and no swaps but at least one three-way swap. More generally, one is 
interested in the probability that for any m from 1 to N, in is the size of the smallest 
subset of N men who exchange hats among themselves. 

We let P,j,(N) denote the probability that among N men, in is the size of the 
smallest subset of men that swap hats. P1(N), then, is the probability of at least one 
match, which is Montmort's original problem. The usual way of calculating P1(N) is 
to let E, be the event that the ith man gets his own hat back. Then we use the 
inclusion-exclusion principle to calculate the probability of at least one match, as 
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follows: 

P1(N) =P(UiEJ) P= E - E P(EiEj) 
i<j 

+ P(EiEEk) - +(-1,)N P(E1E2 ...EN) 
i<j<k 

(N -i)! (N -2)! + (N -3)! - ( ,N+l 1 
N! N ! + ~ N! N 

N N -! N ( N ) N )! + N3 N -3! - ( N+1 1 

1 1 1 (-1) ~N+1 
2! 3! ~~N! 

The series converges to 1 - 1/ec: 0.63 as N tends to infinity. 
Let us now calculate P,,,(N) for some small values of N. If N = 3, there are 3! =6 

ways of distributing the hats. In fact, the sample space is just S3, the group of 
permutations of 3 elements. Let (ijkA) indicate that the first man gets hat i, the 
second hat j, and the third hat k. Then our sample space becomes S3 
{(12 3), (1 32), (2 13), (2 31), (3 12), (3 21)1. Then 

P1(3 = P (at least one match) = P ({( 2 3), (1 32), (2 1 3), (3 2 1)D) = 2 /3 
P2(3 = P(no matches but at least one swap) = PO0 = 0 
P3(3 = P(no matches, no swaps, but at least one 3-way swap) 

= P({(2 31),(3 1 2)1) = 1/3. 

With four men and four hats, there are 4! = 24 sample points. Let (i1 2 13 i4) 
represent the outcome wh-ere the jth man gets hat ii. We know that the probability of 
at least one match is 

Ti+ Ti- =i=24 
_ 

In how many ways can w7e distribute the four hats so that nobody- gets his own, but at 
least one pair of men swaps? Notice that if two men swap, the other two must also 
swap (since no matches are allowed). Hence we want to count the number of ways of 

dividing four men into two pairs. This is 2) - 3, soP() 
In any three-way swap, the fourth man gets his own hat back, so P3(4) = 0. The last 

possibility is of a four-way swap; it has probability P4(4) =1I- 5- 
I 

_ 

We now give a general formula for P..( N): 
L Nl/nI I k+1 r- 

THEOREM 1. P1(N) = k-i k Ac!PIN- 
k 

Pro of. Let E, . ..be the event where men i .. . exchange hats among 
themselves and no smaller subset of men exchange hats. Then, by the inclusion-exclu- 
sion principle, 

LN/m!I 

Pm(N) = 1 (-I) k?1 E:P(E11.. 1iE i12 .. Eilk .. ttk 
k=i 
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where the second summation is taken over all possible choices of disjoint subsets 
{ill) , 1. l} ,{ilk, . . - l,,k} of {1, 2, ..., NI. 

For a specific choice of these subsets, let us calculate the probability that each 
subset of men exchange hats among themselves and no smaller subset of these men 
exchange hats among themselves. This means that the men in {i Ij exchange 
hats in some cyclical manner. There are (m - 1)! such cyclical permutations of each 
subset {i1j, *., ,, i}. For a specific choice, the probability of the chosen cyclical 
permutations occurring among the members of the subsets, with no j-way swaps 
(j < in) occurring among the remaining N -k men, is N N-1 N- Ik 1 
(1 - EL'._lPi(N - mnk)). 

Therefore 

LN/ln kll1 
Pm(N ) = E (1)k+1 EI((m-1)!) N- i N-ink + 1 

k=l 

x 1N/ Pi(\N(--nk) 

- (1) k+ 1 E((i) !;(N-nk) ! P(N-Ink)) 
k=1 i 

where the second summation is over all possible choices of disjoint subsets 
{ill, {ilk, " ,ki,Jkk of {1, 2,..., NI. The number of choices of such disjoint 
subsets is 

(N N-) n) (N-mk+m) I N! 
itnJ m Jn m Jk! k !(M!) k (N -mk)! 

Therefore, finally, 

( Nltiii k)l (1- k iN? 
L N) E ( 1)X k ((r - i)!) 
k=1 m c!(mi1 ) (N -nh)! 

(N -'ink)! 
N! (~~iNr~ 

LNm (-1 . - EP1(N-ink)) 
k-i rn k = 

This completes the proof. U 

The limiting value of P,7,(N) Next we find a general formula for the limit of 
P,7m(N) as N tends to infinity. Recall that for n = 1, this reduces to Montmort's 
problem, so that li"MN OPl(N) = 1 - 1/e. Theorem 2, which gives a formula for 
evaluating P.. iMN P,7( N), uses the following standard lemma of real analysis 
(see, e.g., [9, pp. 73-74]): 

LEMMA. Let {akl and {bkl be sequences such that ak converges to a and Ebk 
converges absolutely and the sumn is b. Let cl1 = E5=Obkalk. Then lim cl = ab. k~~~~ -k Itnlmc b 
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THEOREM 2. Let P,, = limN - ,Pn,(N), in = 1, 2,3,..., N. Then P.. exists, and 

Pn7l=e 1e- kl ei k 
k=i k=i 

Proof. The proof is by complete induction on m. We know (1) is true for mn= 1. 

Now assume in > 1 and whenever i = 1,., in - 1 then P, exists and 

PI =- k-- e- kl 
k=1 k=i 

To show (1), we will first show that 

P = (1-e-1/') 1- pi (2) 

It is enough to show that for each value of r = 0, 1, 2,..., 7n - 1, P,m(mnq + r) 
approaches (1- e"`/'7)(1 - Ei7_ujPi) as q -? To this end, fix r and apply the 

lemma with ak = 1 - 'Pi Onk + r) and bk = (_1) Then a = 1-i'lPi and 

b = e" Therefore as q -oo, 

q _I k 7 7 

kk ( I) 
P,n 

+= r-n) 
e 

i= 
- p 

Now we have, as q -> oo, 

P,(rnq+r)- ~(-1) k? / rn-i 
P12 (mq + 1r) kk Pinq+qr+-)nk) 

77i-1 ~q (_I)k 71- 

=1- 1Pi(mq+r) -E inkk! Pi(m7Iq+r-+r-k) ) 

7n-I ( 7l-1 
I1- EPi-e-"' 1- Pi 

I1 -/ e 7 1- Pi, 
i=i =4i= 

which proves (2). 
By the induction hypothesis, we know that 

in- I rt-i I - - 

pi 5 e =1k -e 11k) 1e-; k-, 
i=l i= 

from which we obtain 

This compl-e-tes t proo.e-e 

This completes the proof. 
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We can now state our main result: 

THEOREM 3. The probability that the size of the smnallest subset of N men that 

exchange hats among themselves exceeds mn approaches e- k as N > oo 

Proof: Theorem 3 follows immediately from Theorem 2, since the probability in 
Theorem 3 is simply 1 - L1 Pi. U 

This result is not new. For instance, Kolchin [3] shows that if a,r is the number of 
cycles of length r in a random permutation of n elements, then 

1 1 1 
P( a.,r-,=kl, a ..r.......aIr.s=ks)= kl!k2! ... ks! e .S I + (1) 

as n oo. In particular, 

1 1 1 

P(a, =0, a =O, a, a=O) =e')= 2-3 + o(1) 

from which Theorem 3 follows. The proof given by Kolchin uses sophisticated tools, 
including local limit theorems in probability and integrals of complex-valued functions. 
The proof given above is relatively elementaiy and illustrates the method of 
inclusion-exclusion. 
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What Can Be Learned From n < n!? 

ANDREW LENARD 
Indiana University 

Bloomington, IN 47405 

In his famous introduction to analysis, A Course of Pure Mathemnatics, the great 
English mathematician G. H. Hardy at one point writes "This is almost obvious" in 
the text, and then appends the following footnote: 

There is a certain ambiguity in this phrase which the reader will do well 
to notice. When one says 'such and such a theoremn is alminost obvious' one 
mnay mean one or other of two things. One may mnean 'it is difficult to 
doubt the truth of the theorem,' 'the theoremn is such as comnmnon sense 
intuitively accepts,' as it accepts, for examitple, the truth of the propositions 
'2 + 2 = 4' or 'the base angles of isosceles triangles are equal'. Th-at a 
theoremn is 'obvious' in this sense does not prove that it is true, since the 
mnost confident of the intuitive juclgmnents of comnmnon sense are often found 
to be mnistaken; a'nd even if the theoremn is true, the fact that it is also 
'obvious' is no reason for not proving it, if a proof cacn be found. The object 
of mathematics is to prove that certain premises imply certain conclusions; 
and the fact that the conclusions mnay be as 'obvious' as the premnises never 
detracts from the necessity, acnd often not even from the interest of the 
proof . 

But somnetimes (as for the example here) we mean by 'this is allmost 
obvious' somnething quite clifferent fromn this. We mnean 'a momnent's 
reflection should not only convince the reader of the truth of what is stated, 
but should also stuggest to himn the general lines of a rigorous proof'. And 
often, when a statemuent is 'obvious' in this sense, one mnay well omit the 
proof, not because the proof is unnecessary, but becatuse it is a waste of 
time to state in detail what the reader can easily supply for himself.' 

A good example to illustrate these remarks is the inequality n < 2' (n = 0, 1, 2,...). 
It is "obvious," indeed so much so that children often become aware of it at an early 
age. And the common sense proof 

n + 1 < 2' + 1 < 2'1 + 2'1 = 2'1+1 

is an excellent textbook case for introducing the student to proof by induction. But 
there is more to it than that. What is the m-eaning of the inequality? It is this: A finite 
set has more subsets than elements. Why? Because if we assign to every element x of 
the set S a subset of S, say A, in any manner whatsoever, there is still at least one 
more subset of S that has not been so assigned. Namely, the subset 

R={x(S: x ( AJ 

has the property that R = Ay is impossible for every element y in S. (Assuming it is 
possible, just ask whether y is an element of R or not!) 

'Hardy credits his colleague and collaborator J. E. Littlewood for the substance of these observations. 
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This beautiful proof of the "obvious" inequality n < 2' has the virtue that it works 
for every set, not just for finite sets: The cardinal number of any set, finite or infinite, 
is less than the cardinal number of the family of its subsets. Thus we see that-as 
Hardy tells us-there is indeed interest in proving an "obvious" theorem. The 
examination of such a proof may for instance, as in the present case, lead to a 
significant generalization. 

The purpose of this note is to examine from this point of view another obvious 
inequality, namely n < n! (n = 3,4,5,... ). Yes, it too is obvious; and in both senses of 
the Hardy-Littlewood remark. It is obvious in the second sense, and so we can trust 
any reader who is so inclined to construct the easy induction proof. But again, there is 
more depth here than meets the eye. The meaning of the inequality is this: A finite 
set has more permutations than the number of its elements, provided only that it has 
at least three elements. And in this formulation the immediate question arises whether 
the theorem is also true for infinite sets. It is; and the proof follows. It is patterned 
closely on the proof just given for n < 2'. One cannot expect the present proof to be 
quite as simple though, for somewhere the hypothesis that the set has at least three 
elements must be used. 

Let us assume then that S is a set (finite or infinite) with at least three elements. 
Let X be any mapping of S into the set of permutations of S. The permutation of S 
assigned by X to the element x of S shall be denoted 7, and ,( y) shall denote the 
element of S into which 7, sends the element y. 

Our aim is to exhibit a permutation a of S that is not in the range of v. Once it is 
shown that this can be done for a truly arbitraiy v, it becomes clear that it is 
impossible to have a one-to-one correspondence between S, or any subset of S, and 
the set of all permutations of S. Therefore the cardinal number of the set of 
permutations of S is revealed as strictly larger than the cardinal number of the set S 
itself. 

An element x of S and the corresponding permutation 7, shall be called self-fixing 
if 7 (x) = x. We distinguish four mutually exclusive and exhaustive cases. 

(1) There are no self-fixing elements in S. 
(2) There is exactly one self-fixing element in S, and there is also a transposition2 

not in the range of v that interchanges the unique self-fixing element with 
some other element. 

(3) There is exactly one self-fixing element in S, but eveiy transposition that 
interchanges this unique self-fixing element with some other element is in the 
range of v. 

(4) The number of self-fixing elements in S is at least two. 

In case (1), a may be chosen as the identity permutation. For then a (x) = x 0 
7,(x) for all x in S. Thus a is not in the range of v, as required. 

In case (2), a may be chosen to be the transposition whose existence is assumed. 
In case (3), let w be the unique self-fixing element of S. For any y 0 w in S, let 

denote the transposition interchanging w and y. By hypothesis, it is of the form X 

for some z in S (depending on y). This z is certainly not w, for , fixes w but 
does not. Therefore, since w is the only self-fixing element, z 0 X (z) = 'r'(z). But 

T being the transposition specified, this shows that z = y. We conclude then that in 
case (3) the range of v consists of one self-fixing permutation -, and otherwise only 
of transpositions that interchange w with another element. Let now y and z be two 

2Recall that a transposition is a permutation that interchanges tvo elements of S but fixes all the rest. 
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elements of S, distinct and also distinct from w (remember that, by hypothesis, there 
are such!). Then the cyclic permutation a defined by 

ar(w) = z, or( z) = y, u( y) = tw, 

and fixing all other elements of S, neither has w as a fixed point nor is a transposition, 
and so it is not of the form 7, for any x in S, as required. 

Finally, in case (4) we may choose a to be any permutation whose set of fixed 
elements is precisely the complement of the set of self-fixing elements of S. If x is a 
self-fixing element of S then 7jx) = x 0 or(x), and if x is not a self-fixing element of 
S then w.j(x) 0 x = a (x). Thus a 0 ,. for all x in S, as required. 
Acknowledgment. The author wishes to acknowledge that the ideas expressed in this note originated in 
conversations with his friend, the late George J. Minty, at one time Professor of Mathematics at Indiana 
University. The writer is also indebted to his colleague W.H. Wheeler for pointing out that, intuitive as it 
may be, the statement that there exists a permutation that moves every point of a set, requires for its proof 
the Axiom of Choice in case the set is infinite. Wlhat one must do in that case is to partition the set into two 
subsets of equal cardinality with a one-to-one correspondence between them, and define the permutation as 
the one that interchanges corresponding points. It is the existence of such a partitioning that depends on set 
theory with the Axiom of Choice. 

Math Bite: Why 2 + 2 Equals 2 x 2 

When I was in grade school, I wondered why 2 + 2 = 2 X 2. Later, I discovered that 
2+2=2X2=22. Why? 

Addition is a repeated application of the successor function, multiplication is 
repeated addition, exponentiation is repeated multiplication. It is natural to define 
recursively an operation (n), where aKl)b is the successor of a taken b times, and 
where aK n>b is defined as repeated application of the operation (n - 1). Thus (1) is 
addition, (2) is multiplication, and (3) is exponentiation. Because exponentiation is 
neither commutative nor associative, we need the usual convention when n > 2: group 
right. For example, aKrn)3 =an - 1)(aKn - I >a). 

Now I know why 2 + 2 = 2 X 2. It is a special case of 2(n)2 = 2Krn)2, for all 
natural numbers m and n. 

I wonder how we would want to define eK(4) (4)i? 

RICK NORWOOD 

EAST TENNESSEE STATE UNIV7ERSITY 

JOHNSON CiTY, TN 37614 
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When is ( xy+ 1)(yz+ 1)( zx+ 1) a Square? 

KIRAN S. KEDLAYA 
Princeton University 
Princeton, NJ 08544 

To cut the suspense, let's start with the surprising answer to the title question. 

Theorem. If x, y, z are positive integers, then (xy + 1)(yz + 1)(zx + 1) is a perfect 
square if and only if xy + 1, yz + 1, and zx + 1 are all perfect squares. 

The purpose of this note is to prove this result using Fermat's method of infinite 
descent, to provide historical context, and to investigate (and eventually refute) a 
possible generalization. 

For t a positive integer, a Pr-set is a set of positive integers, the product of any two 
distinct elements of which is t less than a perfect square. (The positivity restriction is 
sometimes relaxed, but we will impose it throughout.) Classical examples of Pr-sets 
include the P256-set {1, 33, 68, 105} found by Diophantos and the P1-set {1, 3, 8, 120} 
found by Fermat. 

A sizable literature exists addressing the existence or nonexistence of Pt-sets of 
certain forms; some early examples are chronicled in [3, Chap. XIX, pp. 513-520]. A 
little experimentation shows that Pt-sets become nontrivial to construct when they 
must have four or more elements; Euler found a general construction of four-element 
P1-sets which includes Fermat's example. Since this construction is essential for the 
proof of the theorem, we state it as a lemma (following [5]). 

Lemma. If { p, q, r} is a P1-set, then so is { p, q, r, s} for 

s =p +q +r+2pqr+2V(pq + 1)(qr+ 1)(rp + 1) , (1) 

as long as s > 0. (Note that s is necessarily an integer.) 

Proof: The values of s defined in (1) are the roots of the quadratic equation 

p2 + q2+ r2 + s2-2(pq+pr+qr+ps+qs+ rs) -4pqrs-4=0, (2) 

which can be rewritten in the following ways: 

(p + q -r -s) = 4( pq + 1)(rs + 1) 

( p +r-q-s)2 =4( pr+ 1)(qs+ 1) 

( p +s -q -r)2 =4(qr+ 1)( ps + 1). 

Since rs + 1 is an integer which is the quotient of two perfect squares, it is also a 
square, as are ps + 1 and qs + 1 by the same argument. Thus { p, q, r, s} is a PI-set. 

Not surprisingly, constructing five-element Pt-sets is substantially harder. Euler 
gave a general construction, and a number of additional examples are also known; 
however, it is not known whether there exist infinitely many five-element Pr-sets for 
any particular values of t, or whether there exist any at all for t = 1. 

The first significant nonexistence result for Pr-sets is due to Baker and Davenport 
[1]; using Baker's theory of linear forms in logarithms of algebraic numbers, they 
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showed that Fermat's Pi-set 1, 3,8} can only be extended by adding 120. Their 
method was later refined by Grinstead [4] and Brownl [2] and applied to other P,-sets. 
An elementary approach to such questions is given by Kangasabapathy and Ponnudu- 
rai [6] and by Mohanty and Ramasamy [8]; a systematic presentation and a more 
complete bibliography appear in [7]. 

The above theorem does not directly apply to studying the existence or nonexis- 
tence of Pr-sets, but it does give an interesting characterization of three-element 
P1-sets; after the proof, we will see that this phenomenon is (almost) unique to the 
case t = 1. 

Proof of the Theoremn. Suppose there exist triples p, q, r of positive integers (where 
we might as well assume p < q < r) such that (pq + 1)(qr + 1)(rp + 1) is a perfect 
square, but not all of pq + 1, qr + 1, rp + 1 are squares. Choose a triple that 
minimizes p + q + r, and define s as in (1) using the negative square root. We will 
show that 0 < s < r and that ( pq + 1)(qs + l)(sp + 1) is a square, but that not all of 
pq + 1, qs + 1, sp + 1 are squares, contradicting the minimality of p + q + 

By the equivalent forms of (2), we know that 

16( pq + 1)2( pr+ 1)(qs + l)(qr+ 1)( ps + 1) 

= ( pq + 1)2( p + r - q - S)2( p + s - q - r)2 

is a perfect square; since ( pq + 1)(qr + 1)(rp + 1) is a square, so then is ( pq + 1)(qs 
+ l)(sp + 1). Moreover, ps + 1 is a square if and only if qr + 1 is a square, and 
pr + 1 is a square if and only if qs + 1 is a square, so not all of pq + 1, qs + 1, sp + 1 
are squares. 

We also have 

(p +q -r-S)2 > 
rs + 1 P4( pq +1) - 

and so s ? - I /r. Note that r = 1 implies (by our assumption that p < q < r) that 
p = q = r = 1, in which case ( pq + 1)(qr + 1)(rp + 1) is not a square, a contradiction. 
Hence r > 1 and so s ? 0. Moreover, if s = 0, then we have 

4( pq + 1) = ( p +q-r)2, 4(qr+ 1) = (q +r-p)2, 4(rp + 1) =(r+ p-q)2, 

contradicting the assumption that not all of pq + 1, qr + 1, and rp + 1 are squares. 
Therefore s is a positive integer. 

If s' is the other root of (2) (which is to say, s' satisfies (1) using the positive square 
root), then we have 

Ss =p2+ q2 + r2 - 2 pq -2 pr- 2qr-4 

< r2-p(2r-p) -q(2r-q) 

<r2. 

Since s is the smaller of the two roots, S2 < ss' and so we conclude s < r, yielding the 
desired contradiction. U 

Does an analogous characterization of Pr-sets exist for t > 1? In other words, is 
(pq + t)(qr + t)('rp + t) a square if and only if pq + t, qr + t, rp + t are all squares? 
The proof above does not work in general; the natural analogue of (2) would be 

t( p2 + q2+ r2 + s2)-2t(pq+pr+qr+ps+qs+rs) -4pqrs-4t2 = 0, (3) 
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whose equivalent forms are 

4( pq +t)(rs +t) =t( p +q-r-s) 

and so on, but two obstructions arise. If t is not a perfect square, then { p, q, r} can be 
a counterexample even if { p, q, s} is not. Even if t is a perfect square, though, if 
t > 4, we cannot ensure that s is an integer. 

Neither obstruction arises for t = 4, and indeed the reader may check that the 
natural analogue of the theorem holds in this case with essentially the same proof. 
However, we will now show that this analogue does not hold for t 7 1, 4. 

We first construct a counterexample { p, q, r} where t is not a perfect square. Put 
p = 1, q = a2 - t, where q is not a perfect square (which certainly holds if t < 2a + 1); 
we shall find r such that r + t = tb2, qr + t = tc2, which is equivalent to solving 

c2_qb2= 1 -q. 

Indeed, b = c = 1 is a solution, but it yields r = 0, which is not a positive integer. 
Nonetheless it is useful! To produce a nontrivial solution, let (u, v) be a solution in 
positive integers of the Pell equation 

itt2-q2 = 1, 

and put 

(c + b V-) = (I + 4)(t + vV-fl 

Now r = t[(u + V)2 - 1] yields a counterexample. For example, if t = a = q = 2, the 
solution (3, 2) of the Pell equation gives the set { p, q, r} = {1, 2, 48}. 

On the other hand, if t = d 2 for d > 2, we can write t = a2 _ p 2 for some positive 
a, p, and a similar argument starting from the bogus counterexample p, p, r (r 
arbitrary) yields an actual counterexample. 

Acknowledgment. Thanks to George Berzsenyi for providing ideas for my ently in the 1992 Westinghouse 
Science Talent Search, where the above result first appeared. 
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Proof Without Words: A Generalization from Pythagoras 

THEOREM. The sum of the areas of two squares, whose sides are the lengths of the 
two diagonals of a parallelogram, is equal to the sum of the areas of four squares, 
whose sides are its four sides. 

Proof. 

COROLLARY. Pythagoras's theorem (when the parallelogram is a rectangle). 

Nelsen [1] reproduces a famous proof that uses tessellation similarly. 

REFERENCE 

1. R. B. Nelsen, Proofs Without Words, Math. Assoc. of America, Washington, DC, 1993, p. 3. 

-DAVID S. WISE 
INDIANA UNIVERSITY 

BLOOMINGTON, IN 47405-4101 
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Proof Without Words: Sums of Integers as Sums of Cubes 
2+3+4= 1+8 

5+6+ 7+8+9=8+27 
10+ 11 + 12+ 13+ 14+ 15+ 16=27+64 

(n2 + 1) + (n2 +2) + +(n + 1)2n3 + (n +) 

.-_ 

(n~~~~~~~~~~~( + I 

12 + 1 

-ROGER B. NELSEN 
LEWIS AND CLARK COLLEGE 

PORTLAND, OR 97219 
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P ROBeL EMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by July 1, 1998. 

1539. Proposed by Donald Knuth, Stanford University, Stanford, California. 

Let p and q be positive numbers with p + q = 1, and suppose 0 < E < q. Prove 
that 

( P )IE ( ) < e-2 e 

1540. Proposed by Michael Golomnb, Purdue University, West Lafayette, Indiana. 

(a) Show that x1? + (x -1) -(x + 1)" has a unique non-zero real root r,. 
(b) Show that r,, increases monotonically. 
(c) Evaluate lim 1 ,,r,, /n. 

1541. Proposed by Wit Wei Chao, He Nan Normnal University, Xin Xiang City, He 
Nan Province, China. 

Assume a1 > l and define a,,1 l= 1/a + al-I for n = I, 2,3,.... Evaluate 

lim Ia?1 - a | / 
n -- cc 

We invite readers to submnit problems believed to be new and appealing to students and teachers of 
advanced tundergradtuate miathemiiatics. Proposals must, in general, be accomnpanied by soltutions and by anty 
bibliographical information that tvill assist the editors and referees. A problem stubmitted as a Qluickie 
shotuld have an unexpected, succinct solution. 

Soltution.s should be w;-ritten in. a style appropriate for this MAGAZINE. Each solution shotuld begin on a 
separate sheet containing the solver's name and fidl address. 

Soltutions an.d neew proposals shotuld be mailed to George T. Gilbert, Problems Editor, Department of 
Mathemnatics, Box 298900, Texas Christian University, Fort WVorth, TX 76129, or miiailed electronically 
(ideally as a LATEX file) to g. gilbert@tcu. edu. Readers who itse e-imail shoulld also provide an 
e-mail address. 
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1542. Proposed by Jerrold W. Grossman anrd Barry Turett, Oakland University, 
Rochester, Michigan. 

Sam and Joe (names favored by the late Paul Erd6s) play an infinite game on the 
real number line. They start at distinct initial positions and alternate turns. At each 
turn a player must move to some point strictly between the players' current positions. 
Being monotonic and bounded, the sequence of positions for each player converges. A 
player wins the game if his limit is rational and loses if his limit is irrational. 

(a) Show that Joe can force Sam to lose. 
(b) Find a strategy by which Joe will win with probability 1 if Sam plays randomly 

(i.e., at each turn, Sam chooses a point in the gap between the players, 
independent of previous choices, based on the uniform distribution). 

(c) Does the result in (a) hold if the winning set is an arbitraiy set of measure zero? 

(Obviously they can play cooperatively and end up with a win/win situation. 
Furthermore, either player can unilaterally guarantee that the results for both players 
are identical by forcing the gap between them to vanish.) 

1543. Proposed by Michael Golornb, Purdue University, West Lafayette, Indiana. 

Let S be a given n-dimensional simplex with centroid C. A hyperplane through C 
divides the simplex into two regions, one or both of which are simplexes. Find the 
extrema of the volumes of those regions which are simplexes. 

Quickies 
Answers to the Quickies are on page 73. 

Q874. Proposed by Matt Baker, graduate student, University of California at 
Berkeley, Berkeley, California. 

Find all integer solutions to x2 + 6 y2 = 2 Z + 3w2. 

Q875. Proposed by Hoe Teck Wee, Lengkok Bahnt, Singapore. 

Given a list of 3n not necessarily distinct elements of a set S, determine necessary 
and sufficient conditions under which these 3n elements can be divided into n triples, 
none of which consist of three distinct elements. 

Q876. Proposed by Mihaly Bencze, Braqov, Romnania. 

Let A and B be n X n matrices with integer entries such that A + kB has an 
inverse with integer entries for k = 0, 1, . 2n. What is the determinant of B? 

Solutions 
Subsets Whose Elements Sum to a Multiple of a Prime February 1997 

1514. Proposed by Hoe Teck Wee, Lengkok Bahru, Singapore. 

Let p be an odd prime and k be a natural number. Find the sum of the elements 
of the subsets of {1,2,.. ., kpl, the sum of whose elements is divisible by p. (For 
instance, when p = 3 and k = 1, the relevant subsets are {1, 21, {3}, and {1, 2,31, and 
the required sum is 12.) 

This content downloaded from 202.28.191.34 on Fri, 12 Feb 2016 09:58:52 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


68 MATHEMATICS MAGAZINE 

(This generalizes problem 6 of the 36th International Mathematical Olympiad, held 
in July 1995.) 

Soltution by Lior Pachter, Massachusetts Institute of Technology, Cambridge, AMas- 
sachtusetts. 

The sum of such elements is k(kp + 1)(2kp + 2k( p - 1))/4. 
More generally, let Nt, k denote the number of subsets of {1,2,.. ., kn}, the sum of 

whose elements is divisible by n, and let Sn k denote the sum of the elements of all 
such subsets. We first show that 

N, k 2 k I `(dZ) 
d odd 

where +(d) is the number of positive integers that are at most d and relatively prime 
to d. Our argument follows the derivation for k = 1 found in R. P. Stanley, 
Enumerative Combinatorics, vol. 1, p. 59. Consider the polynomial 

P(X) = (1 +x)(1 +?X2) ... (1 +xkt) = E Xi. 
j20 

Then a, counts the number of ways to express j as the sum of the elements of subsets 
of {1,2,..., kn}. Let ;:= e2t7' For any integer j, L = equals n if n divides j 
and 0 otherwise. Therefore, we have 

1 
E P(; 1)= E ap 

= Nil, 
m7 = I j20 

Setting d = n/(n, i), we have that ... is a primitive dth root of unity. Setting 
x = -1 in the identity 

x 1 = (x - ; ) (x 2rni) ... ( x - ;d. 

yields 

(1 ? ) (1 ?+ 2in ) ...1 ?+ (dm) 
2 if d is odd, ( ) '~~~ " (O~ if d is even. 

Since there are +(d) values of rn for which ; is a primitive dth root of unity, we 
obtain 

N, k = E P(; ~') = - E 2kn/c(lP(4d). 
d odd 

Note that the sum of the elements of the set {1, 2,. .., kn} is kn(kn + 1)/2. For n 
odd or k even, if the elements of a subset S of {1, 2, .. ., kn} sum to a multiple of n, so 
do the elements of {1, 2,.. ., kn} - S. This pairing yields that the mean of the sum of 
the elements of subsets summing to a multiple of n is kn(kn + 1)/4. This implies that 

kn(kn + 1) N = k(kn 1) E 2 k/ (d) Sk = ~4 4,kdln din 
d odd 

The formula for n an odd prime p follows. 

Also solved by Thomnas Jager, Kee-Wai Lat (Hong Kong), Peter W. Lindstromn, and the proposer. There 
were one incorrect soluttion and one incomplete solution. 
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A 3-Dimensional Heron-Type Formula February 1997 

1515. Proposed by Isaac Sofair, Fredericksburg, Virginia. 

The edges of a parallelepiped emanating from one vertex are given by the vectors a, 
b, and c, of lengths a, b, and c, respectively. If a, ,B, and -y are the angles between b 
and c, c and a, and a and b, respectively, and (r = (a + B + ?y)/2, show that the 
volume of the parallelepiped is 

2 abcVsin o- sin( o- - a ) sin( (r -,B ) sin( (r - y) 

Solution by Reza Akhlaghi, Prestonsburg Conmnunity College, Prestonsburg, Ken- 
tucky, and Fary Sami, Harford Conmnunity College, Bel Air, Maryland. 

Without loss of generality, we may assume that a = ai, b = b1i + b2j, and c = c1i + 
c2j + c3k. Furthermore, reflecting if necessary, we may assume that b2 and C3 are 
positive. Since the angle between a and b is y, we get b1 = b cos y and b2 = b siny. 
Similarly, c1 = c cos ,B. From 

bc cos a = b c = bc cosy cos/3 + bc2 siny, 

we obtain c2 = c(cos a - cos ,B cosy)/sin y and finally 

C,3= VC2 _ C2 _ =C y/1I - cos2a - _cos2- cos2,y + 2cos a cos , cos y 
C3= |C2-C12-C22 =C sin y 

The volume of the tetrahedron is given by 

a O O 

a (bxc)l= det bi b2 0 =ab2c3 

- abcl- - cos-a - o8 - cos2y + 2cos acos/3 cos-y. 

We must derive a trigonometric identity to complete the solution. Beginning with 
the desired result and using well-known identities for products of sines and cosines of 
sums, we have 

4sin (r sin( o--a ) sin(u- f- )sin( uf- y) 
a ?+ y+ a+ -y (.y-a+/ . y+a-/\ = 2sin 2 sin 2 )2sin 2 sin 2 ) 

= (cosy- cos(a ?+,3))(cos(a --,3) - cosy) 

= cosy(cos( a - /) + cos( a + /)) - cos( a + /) cos( a - )-cos2y 

= cosy(2cos a cos,)- (cos2a cos2,3 - sin2a sin2,)- cos2-y 

= 1 - cos2a - cos2 -cos2y + 2cos a cos /3 cos 'y. 

Conmment. Can Minh reports that the problem of computing the volume of a 
parallelepiped in terms of its sides and the angles between its sides appeared as 
problem 27.11 in The Mathematical Spectrum 27:3 (1994/5). The answer published 
in 28:2 (1995/6) was the above expression involving cosines. 

Also solved by Anchorage Math Solutions Grotup, Rich Batier, J. C. Binz (Switzerland), Mangalamin R. 
Gopal, S. A. Greenspan, John G. Heuver, Thomiias Jager, Henigli Jiao, Murray S. KlJam.kin (Canada), 
Victor Y. Kutsenok, Neela Lakshmanian, Ralph Merrill, Can A. Minnh (graduatate student), Williamn A. 
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Newcornb, P. E. Niiesch (Switzerland), Karel A. Post (the Netherlands), I. A. Sakmzar, V7olkhard 
Schindler (Germany), Michael Vowe (Switzerland), Peter Y. Woo, Robert L. Young, Pa7ul J. Zwvier, and 
the proposer. 

A Sum Representing an Integral February 1997 

1516. Proposed by David Doster, Choate Rosemary Hall, Wallingford, Connecticut. 

Let S,2 = Lkl T4n2 - k2. Find the unique value of c for which limr, J(cn-S,/n) 
exists, and evaluate the limit for this value of c. 

Solution by Williamn A. Newcornb, Walnut Creek, California. 
The unique value of c is F3 /2 + iT/3. In this case the limit equals 1 - /2. 
Let f( x) = V4- . If c exists, then from the definition of the Riemann sum it 

must satisfy 

c= lim 2= lim Ef(k/n)'=-f'(x)dx= "- +3 , n 00 k 1 2 3 
The value of the integral follows from substitution or from interpreting the integral as 
the area of a triangle and a sector of a circle of radius 2. For this value of c, the mean 
value theorems for integrals and derivatives imply that there exist 4k and (k in the 
interval ((k - 1)/n, k/n) such that 

n k;n (f(x) -f(k/n)) dx=itkn fx )f(k//) (x-(k/n) A/ 
k -Sk)f( k ) ( ;-k/n) dx nfk/n (f(x)-f(k/n)) d =nJA4 fkn li, ' )d 

( / ((k-) /n 

Thus, 

lim ( n- S,/n) = lim Ekn (f( x) -f(k/n)) dx 
n n>oo 00 k k -1)/n 

lim Ef () n=- X|f'(x)dx 

= 2 (f(?) -f(l) = 1 - 2 

Alternatively, both limits are obtainable from the trapezoidal rule. For some; in 
(0, 1), we may write the trapezoidal rule in the form 

1 E f(k/n) ff( x) d +1 (f(1)-f(O))- 2 2 ki2n 12 n 

Multiplication by n leads to the desired limit. Additional terms in this expansion are 
obtainable from the Euler-Maclaurin summation formula. 

Comment. Several readers pointed out that a more general derivation appears as 
Problem 10 of G. Polya and G. Szego, Problemns and Theorems in Analysis, vol. 1, 
Springer, New York, 1976, p. 49. 

Also solved by Robert A. Agnew, Re-a Akhlaghi and Fary Sami, Anchorage Math Solutions Group, 
Michael H. Attdreoli, Michel Bataille (France), Rich Batter, Pauil Bracken. (Canada), Hon.gwei Chen, John 
Christopher, C. Coker, Charles Diminnie and Trey Smith and Roger Zarnowski, Daniele Donini (Italy), 
Robert L. Dotcette, Mordechai Falkowitz. (Canada), Russell A. Gordon, Michael J. Hoffman and Richard 
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Katz., Anne L. Hudson, Paul L. Irwin, Thomans Jager, Parviz Klialili, Peter W. Lindstrom, Kandasamy 
Muthtivel, Karel A. Post (the Netherlands), HeinZ.-Jiirgen. Seiffert (Germany), Nicholas C. Singer, Isaac 
Sofair, Dave Trantman, West Chester University Calculus II Class (Angeline Cremins, Mark Lanplugh, 
Kyang Lee, Wes Peoples, Craig Walter), Western Manyland College Problems Group, Yan-Loi Wong 
(Singapore), Patl J. Zwier, and the proposer. There were five incorrect solutions. 

The Determinant of a Spiral February 1997 

1517. Proposed by Charles Vanden Eynden, Illinois State University, Normal, 
Illinois. 

Let M, be the n X n matrix with entries the integers from 1 to n2 spiraling 
clockwise inwardly, starting in the first row and column. For example 

1 2 3 4 
1 12 13 14 5j 

4 = 1 16 15 6 
10 9 8 7 

Evaluate the determinant of Mn. 
Solution by G. R. Miller, King Fahd University of Petroleum and Minerals, Dhahran, 
Saudi Arabia. 

First observe that we get the same determinant if the clockwise spiraling of entries 
starts in the last row and column, since a matrix of the first form is transformed into 
one of the second by exchanging the pairs of rows and the pairs of columns indexed by 
1 and n, 2 and n - 1, 3 and n - 2, and so forth. 

More generally, write 

x x+l x+n-2 x+n-1 
x+4n-5 x+4'n-4 .. x+5ni-7 x +n 

x + 3n-3 x + 3n-4 x + 2n-1 x + 2n-2 
and let A7( x) denote the matrix formed by replacing the first row of M,( x) with a 
row of ones. We seek detM,.,(1). 

By subtracting x times the first row of A,( x) froml each of its other rows, we see 
that a7 = det A, is independent of x. Also, set m,(x) = detM,n(x). For n > 2, 
adding the last row of M,( x) to its first row, we see that 

mn( x) = (2x + 3n-3)a,. 
For n > 3, to get a recursion for an, add the 2nd and the last rows of A,1(O) to its first 
row, obtaining 

7n-7 7n-7 7n-7 3n-1 
4n-5 4n-4 5n-7 n 

a, = det 

3n-3 3n-4 2n-1 2n-2 
Using linearity of the determinant in its first row along with our initial observation, we 
find that 

an = (7n - 7)a,n + (- 1) 1(4n - 6)m,-11(2n - 1) 
= (7n - 7) a,7 + (-1) (4n - 6) (7n - 8) a-,1 - 

Therefore, a =(-1) '(4n - 6)a,1. Starting with a2 = -1, it is easy to verify that 

a,1 = (-1)( 1)n/2211 2 (2n - 3)(2n - 5) 3 = (-1)n11n/2 (2n - 3) !/(n - 2)!. 
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It follows immlediately that n,x) = (2x + 3n - 3)(- 1)'-1)'n/2(2n - 3)!/(n - 2)! 
and that n (1) = (- 1)(n - 1)n/2(3n - 1)(2n - 3)!/(n - 2)!. 

Also solved by Site Acketrmann (gr-ad.ate student), Anchorage Math Solutions Group, Rich Ballet, J. C. 
Binz (Switzerland), Darrah Chavey, Johtn Chavez, John Christopher, C. Coker, Thelmna W. Hedgepeth, 
Parviz KYialili, Norm7la7n F. Lin.dqtlist, Nicholas C. Singer, Irving C. Tang, Western-. Maryland College 
Problems Group, Michael Woltermann, Yan-Loi Wong (Singapore), and the proposer. Ther-e wvas one 
inicomiiplete soltution. 

Spirals of Squares February 1997 

1518. Proposed by Ecltdard Kitchen, Santa Monica, California. 

Let C,7 be the center of a square whose side-length is F, n > 0, where (F,,) is the 
Fibonacci sequence 0, 1, 1, 2, 3, .... Place the squares side-by-side in a spiral as in the 
diagram below. For n > 0 join the midpoints of adjacent sides of each quadrangle 
C2 C2 Cn +2 C 1 (where C-1 = C1 by convention). Prove that the resulting 
pattern is another sequence of squares whose side-lengths are a constant multiple of 
the Fibonacci sequence. 

C5 

Comnposite of solutions cldue to J. C. Binz, University of Bern, Bern, Switzerland, and 
the Editors. 

Express the centers Cn as complex numbers with CO = 0. By considering each of 
the four possible remainders when n is divided by 4 as a separate case, it is easy to 
verify that 

C =C + 2 + F, i). 
The midpoints of the adjacent sides of any quadrangle Cn -2 C1l_ Cn +2 Cn+1 form a 
parallelogram. Thus, to show they form a square, it suffices to show that 

CI2-1 + Cn+2 C i-2 +C = [f C11+1 + C7-2 _ C)-2 + C-1 A 

2 2 2 2 
or that 

C,?+2 -Ct-2 Cn+1 -C,l1-1 

2 2 . 
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Now 
C?+1 -C ll -1 C?+1 - Cn Cfl - C,2-1 

2 2 2 
1+i 

[in?+2 (F + F?+li) + in?1(FI- + F,?i)] 

= 1ji'+l (-F; + 2Fli) = F3 i 4 4 

Similarly, 

Cn?+2 - C-2 = Cn+2 -C, + -C-2= 3 + n+2F + +iF 
2 2 + 2 4 n?1 4 u-i 

-3 +i i +2F 
4 II 

The claim follows. In addition, the proof shows that new squares have sides of length 
F,1-0 /4 and that the original orientation has been rotated counterclockwise by an 
angle with tangent - 1/3, or approximately 161.6 degrees. 

Also solved by Neela Lakshmana'n, Karel A. Post (the Netherlantds), Volkhar.cl Schinidler (Germanly), 
Joel Schlosberg (student), Stephen Swiniarski, and the proposer. 

Answers 
Solutions to the Quickies on page 67. 

A874. The only solution is x = y = Z = tv = 0. It clearly suffices to prove there are no 
solutions with x, y, 7z, t nonnegative and not all 0. Suppose otherwise, and let 
(x, y, z, w) = (a, b, c, d) be a solution with a + b + c + dc minimal. Note that a2 2c2 
(mod 3), and because 0 and 1 are the only squares modulo 3, we conclude that 
a c 0 (mod 3). Thus, a = 3m and c = 3n with in + n < a + c. (Otherwise, a = c 
= 0, implying vhb = d, hence b = d = 0.) But then 3m2 + 2b2 = 6n2 + d , so the 
4-tuple (d, n, b, m) satisfies the original equation. However, d + n + b + in < a + b + 
c + d, contradicting the minimality of a + b + c + d. 

A875. Given s E S, let ks > 0 denote the number of times s appears in the list. The 
condition is that not more than n of the ks are odd. To prove necessity of the 
condition, consider a division into triples satisfying the hypothesis. Observe that if ks 
is odd, then there must exist some triple containing an odd number of s's. However, 
each triple includes exactly one element that occurs an odd number of times in the 
triple. Since there are n triples, ks is odd for at most n distinct s. To prove 
sufficiency, assume that ks is odd for at most n elements s E S. For each s with k, 
odd, begin a triple with one s in an empty group. Every s appears with even 
multiplicity in the remainder of the list. Thus, we may form n pairs of identical 
elements from these remaining elements. Place one pair in each of the n triples, thus 
ensuring that no triple consists of three distinct elements. Finally, put one of the 
remaining elements in each of those triples with only two elements. 

A876. The determinant of A + xB is a polynomial in x of degree at most n, with 
det B the coefficient of x ". What is given implies that det (A + kB) = ? 1 for 
k = 0, 1, . . ., 2 n. Thus, the polynomial det ( A + xB) takes on the same value for n + 1 
values of x, hence must be a constant. Therefore, det B = 0. 
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REVI EWS 

PAUL J. CAMPBELL, editor 
Beloit College 

1997-98: University of Augsburg, 
Germany 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for 
this section to call attention to interesting mathematical exposition that occurs outside the 
mainstream of mathematics literature. Readers are invited to suggest items for review to 
the editors. 

Singh, Simon, and Kenneth A. Ribet, Fermat's last stand, Scientific American (November 
1997) 68-73. 
Mauldin, R. Daniel, A generalization of Fermat's Last Theorem: The Beal Conjecture and 
Prize Problem, Notices of the American Mathematical Society 44 (December 1997); also 
available at http://www.ams.org/publications/notices/199722/beal.htm1. 
Devlin, Keith, Devlin's Angle: Move over Fermat, now it's time for Beal's problem, http: 
//www.maa.org/devlin/devlin-12-97/html. 
Peterson, Ivars, Prize offered for solving number theory conundrum, Science News 152 (15 
November 1997) 310; also available at http://www.sciencenews. org/sn_arc97/11i15_97/ 
.fob2.htm. 
Peterson, Ivars, The amazing ABC conjecture, http: //www. maa. org. mathland/mathtrek_ 
12_8.html. 
Darmon, H., and A. Granville, On the equations zm = F(x,y) and AxP + ByP = cZr, 
Bulletin of the London Mathematical Society 27 (1995) 513-543. 

In 1908 physician Paul Wolfskehl established a prize for the proof of Fermat's Last Theorem 
(FLT), and Andrew Wiles received its $50,000 last year. With FLT resolved, what's left to 
do? Now a Texas banker, Andrew Beal, is offering max{$50,000, $5,000 x (Y - 1996)} for 
the resolution in year Y of the more general Beal's conjecture: The equation Xm + yn = zr 

has no solutions with x, y, z coprime for integers m, n, r > 2. In other words,/ apart from 
squares, no two powers of integers sum to another power, unless they have a common factor 
(e.g., 23+23 = 24 or 33 +63 = 35). FLT is the special case m = n - r. In 1995 Darmon and 
Granville showed that for fixed m, n, r, the equation has only finitely many solutions. (The 
related ABC conjecture, discussed previously in this column and also by Peterson, implies 
that i/p + l/q + 1/r > 1/2, hence that there are no solutions for exponents sufficiently 
large.) Darmon and Granville also investigated related open problems and formulated what 
they call the Fermat-Catalan conjecture: There are only finitely many solutions with x, y, z 
coprime when 1/p + l/q + 1/r < 1. Mauldin and Peterson give further references. 

Babai, Laszlo, Carl Pomerance, and Peter Vertesi, The mathematics of Paul Erdos, Notices 
of the American Mathematical Society 45 (January 1998) 19-31. Babai, Laszlo, and Joel 
Spencer, Paul Erdos (1913-1996), ibid. 64-73. 

These commemorative articles offer an overview of Erdos's mathematical achievements and 
an account of his life and unusual work- and lifestyle. In addition, a recent film about Erdos, 
"N Is a Number-A Portrait of Paul Erdos" is available from the MAA, and more references 
are at the Web page http://www.cs.uchicago.edu/groups/theory/erdos.html . 
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Schulz, Andreas S., David B. Shmoys, and David P. Williamson, Approximation algorithms, 
Proceedings of the National Academy of Sciences of the USA 94 (November 1997) 12734- 
12735; also available at http://www.pnas.org/cgi/content/full/94/24/12734 . 

This paper is a brief nontechnical survey by leading experts of recent progress in approx- 
imation algorithms in the context of applications. An a-approximation algorithm is one 
that efficiently computes a solution whose value is within a factor a of optimal; we want 
a to be as close to 1 as possible. Randomization is one technique for approximation algo- 
rithms for NP-complete problems. The authors describe new randomized approaches that 
solve the maximum cut problem with an expected cut weight of a = 0.878 of optimal, 
the routing problem in a communication network (minimizing congestion) with a = 1 + c, 
and the problem of efficiently drilling holes in circuit boards (with Euclidean metric) with 
a = 1+ e. 

The 1997 Nobel Prize in Economics, http: //www.nobel. se/announcement-97/economyl997. 
html . 
Ferreyra, Guillermo, The mathematics behind the 1997 Nobel Prize in Economics, http: 
//www. ams . org/new-in-math/black-scholes-ito .html. 
Rubashs, Kevin, A study of option pricing models, http: //bradley. bradley. edu/Y.7Earr/ 
bsm/model.html. 
Devlin, Keith, Devlin's Angle: A Nobel formula, http://www.maa.org/devlin1197. 
html . 

The 1997 Nobel Prize in Economics was awarded to Robert C. Merton (Harvard) and Myron 
S. Scholes (Stanford) "for a new method to determine the value of [financial] derivatives" 
(such as stock options). That method involved the formulation of a model with appropriate 
assumptions and solution of the resulting stochastic differential equation (a differential 
equation whose solution is a stochastic process). The articles cited give a glimpse into the 
situation modeled and into the mathematics used. 

Hayes, Brian, Square knots, American Scientist 85 (November-December 1997) 506-510. 

What if space were (is?) discrete-that is, topologically equivalent to Z3 instead of to R3? 
This article investigates what knot theory in such a space is like. For instance, there is 
a smallest nontrivial knot, as measured by its length. Also, pursuing a three-dimensional 
random walk that otherwise avoids intersecting itself until it returns to its starting point 
produces a knot; the probability that this knot is the unknot tends to 0 as the number of 
steps increases. 

Devlin, Keith, Making the invisible visible, http://www.maa.org/features/invisible. 
html. 

"How do we set about rectifying the result of hundreds of years of bad press" for mathemat- 
ics? So asks the former editor of MAA's Focus newsletter in a commencement address last 
spring. His answer, in all seriousness: "Sound bites ... the only way we have of changing 
public opinion ... . I don't think there is much of a case to be made in favor of trying to 
[increase public understanding of mathematics]. What I want to change is the public per- 
ception of mathematics." He suggests two such sound bites: Mathematics is the science of 
patterns, and Mathematics makes the invisible visible, and gives several examples to show 
how each can encompass mathematics. 
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Guidelines for Authors 

The following Guidelines have been updated in several respects from their 
earlier form, which appeared in the February 1996 issue of this MAG- 
AZINE. For instance, these Guidelines address some aspects of elec- 
tronic submission of manuscripts and figures. These Guidelines (and 
additional information) are also available on the World Wide Web, at 
http://www.maa. org/pubs/mathmag.html. 

General information MATHEMATICS MAGAZINE is an expository journal of un- 
dergraduate mathematics. 

Both adjectives in the preceding sentence are important. Articles submitted to 
the MAGAZINE should be written in a clear, lively, and inviting expository style. 
The MAGAZINE is not a research journal, so papers written in the "theorem-proof- 
corollary-remark" style are usually unsuitable for publication. The best contribu- 
tions contain examples, applications, historical background, and illustrations. 

Every article should contain interesting mathematics, readably presented. Orig- 
inality and freshness of approach are essential. Original research results in pure 
mathematics are, as a rule, outside our purview, although description and exposi- 
tion on research results may be appropriate. 

We especially welcome papers that include a historical element, and papers 
that draw connections among various branches of the mathematical sciences, and 
between mathematics and other disciplines. Papers with educational or pedagogical 
content are welcome, and are held to the same high standards of mathematical 
content, exposition, and general interest as are other submissions. Educationally- 
focused papers that touch on other subjects, bring in history, or appeal to advanced 
undergraduates are more likely to be accepted. 

Audience The MAGAZINE is an undergraduate journal in the broad sense that 
it addresses both teachers and students of collegiate mathematics. Among the 
intended uses of the MAGAZINE is to supplement and enliven undergraduate math- 
ematics courses, especially at the upper undergraduate level. Articles, therefore, 
should be inviting and accessible to non-specialists, including well-prepared under- 
graduates. To this end, references should be provided generously, since we aim to 
invite readers to pursue ideas further. Bibliographies may contain suggested read- 
ing along with sources actually used or cited. Whenever possible, references should 
cite readily available sources, in their most recent editions. 

What makes a good article? MATHEMATICS MAGAZINE is responsible first to 
its readers (most of whom are mathematical generalists), and then to its authors. A 
manuscript's publishability depends, therefore, as much on its quality of exposition 
as on its "pure" mathematical significance. Our general advice is simple: Say 
something new in an appealing way, or say something old in a refreshing way. But 
say it clearly and straightforwardly, assuming a minimum of technical background. 
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Good exposition in our sense is vigorous and informal, written in the active voice, 
and rich with helpful examples. Minimize computation; stress motivation, insight, 
and illustration. Illustrate your ideas with visually appealing graphics, including 
figures, diagrams, tables, drawings, and photographs. 

First impressions are especially important. Titles should be short, descriptive, 
and attractive. The opening sentences should clearly summarize the paper's scope 
and aims. A successful introduction should aim to enlarge rather the paper's audi- 
ence, rather than limit it to a few specialists. 

Many useful references on good mathematical style and exposition are avail- 
able; several are listed at the end of these notes. Some of these references may be 
especially helpful for writers who use computer writing environments. 

Types of papers Most papers in the MAGAZINE are published either as Articles 
or as Notes. Articles have a broader scope than Notes, and usually run longer than 
2000 words. Articles should be divided into a few subsections, each with a carefully 
chosen subtitle. Typical Notes are shorter, more narrowly focused, and less formally 
sectioned-a few paragraph headers should suffice. In addition to expository pieces, 
we publish Proofs without Words, Math Bites, and (in very limited quantity) poems, 
cartoons, and other mathematical miscellanea. See any issue of the MAGAZINE for 
examples of these genres. 

Style and format Manuscripts should be clearly typewritten or laser-printed, 
with wide margins and line-spacing. The title, author, and author's address should 
appear at the top of the first page. Pages should be numbered. 

References should be listed either alphabetically or in the order cited in the text; 
in either case, consistency is essential. Please adhere very closely to the MAGAZINE'S 
style for capitalization, use of italics, etc. See any issue (and the references below) 
for examples. In particular, journal titles should be abbreviated as in Mathematical 
Reviews. 

Figures and illustrations Figures may be either interspersed with text or ap- 
pended to the end of a paper. (If the paper is accepted, separate copies of all figures 
must also be supplied, both with and without added lettering.) All figures should 
be numbered, and must be referred to by number in the text. Authors themselves 
are responsible for providing figures of publishable quality; the MAGAZINE has no 
"art department." 

Submitting manuscripts As a rule, papers should be submitted to the MAGA- 

ZINE in physical form. Please submit three copies; keep another copy as protection 
against possible loss. Electronic submission is possible in limited circumstances, 
but we cannot guarantee any response to electronic submissions in formats that are 
obscure or unfamiliar to us. For details, contact mathmagOstolaf . edu . 

Manuscripts and other correspondence should be mailed to 

Paul Zorn, Editor, MATHEMATICS MAGAZINE, St. Olaf College, 1520 
St. Olaf Avenue, Northfield, Minnesota 55057-1098. 

Please include an e-mail address, if available. 

This content downloaded from 178.250.250.21 on Sat, 05 Dec 2015 07:28:13 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


78 MATHEMATICS MAGAZINE 

Our referees are asked to check for mathematical accuracy, but also to give 
detailed suggestions on stylistic matters. In practice, almost all papers require 
some revision before being accepted for publication. After acceptance, papers are 
copy-edited in our office. 

Electronic manuscripts Although original submissions will normally be in phys- 
ical form, we appreciate receiving revisions and final versions in electronic form- 
ideally, in some variant of TFX or 1A17&X, but any electronic form is better than none. 
Figures, if supplied electronically, should be saved to PostScript or Encapsulated 
PostScript (EPS) form. 

Simple I4IEX "template" files are available for Articles and Notes; they can be 
had either by sending an e-mail request to mathmaggstolaf . edu or, via the Web, 
at http://www.maa.org/pubs/mathmag.html . These templates produce rough 
approximations to the appearance of Articles and Notes in the MAGAZINE. 

REFERENCES 

1. American Mathematical Society, A Manual for Authors of Mathematical Pa- 
pers, 8th edition, Amer. Math. Soc., Providence RI, 1984. 

2. R.P. Boas, Can we make mathematics intelligible? Amer. Math. Monthly 88 
(1981), 727-731. 

3. Harley Flanders, Manual for Monthly authors, Amer. Math. Monthly 78 (1971), 
1-10. 

4. Leonard Gillman, Writing Mathematics Well, Math. Assoc. of America, Wash- 
ington DC, 1987. 

5. Andrew Hwang, Writing in the age of URTFX, AMS Notices 42 (1995), 878-882. 

6. D.E. Knuth, T. Larrabee, and P.M. Roberts, Mathematical Writing, MAA 
Notes #14, Math. Assoc. of America, Washington DC, 1989. 

7. Steven K. Krantz, A Primer of Mathematical Writing, Amer. Math. Soc., 
Providence, RI, 1991. 

8. N. David Mermin, Boojums All the Way Through, Cambridge Univ. Pr., Cam- 
bridge, UK, 1990. 

This content downloaded from 178.250.250.21 on Sat, 05 Dec 2015 07:28:13 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


a;.6s .s......... G h..v..a . 

... Upate by.osph...Slvema 

............ 

--, 

B v 3 :..s.iL 

...ma a .. ..9 . 3B..^f.. ;3^,,3 N^ rBi 

;.. .lop iainius ain 
. G. Basmaov 

Translated by Abe Shenitzer 
Seies Dolciani Mathematical Expositions 

Most readers associate the mathematics of antiquity 
with Euclid's Elements and the works of Archimedes 
and Apollonius. This wonderful little book will 
introduce the reader to a new aspect of the mathe- 
matics of antiquity in the works of Diophantus. 
The object of this book is to present the work of 
Diophantus, focusing on Diophantus' methods of 
obtaining rational solutions of indeterminate equa- 
tions of the second and third order. 
The first part of the book presents the elementary 
facts of algebraic geometry essential to understand- 
ing the rest of it. The book clears up the misconcep- 
tion that Diophantus relied on clever tricks rather 
than general methods to solve problems. Professor 
Bashmakova shows that in modem theorems, 
Diophantus used general methods to find rational 
points on algebraic curves of genus 0 and 1. 
The second half of the book considers the evolution 
of the theory of Diophantine equations from the 
Renaissance to the middle of the 20th century. In 
particular, the book includes substantial descrip- 
tions of the relevant contributions of Viete, Fermat, 
Euler, Jacobi, and Poincare. The book ends with 

Joseph Silverman's survey of Diophantine analysis 
during the last twenty years in which he mentions 
the proof of the Mordei conjecture and of Fermat's 
Last Theorem. 
The book is intended for a broad audience. It can be 
enjoyed by. teachers as well as students at all levels. 
Table of Contents: Introduction; Diophantus; 
Numbers and symbols; Diophantine equations; 
Evaluation of Diophantus' methods by historians of 
science; Indeterminate quadratic equations; 
Indeterminate cubic equations; Diophantus and 
number theory; Diophantus and the mathematicians 
of the 15th and 16th centuries; Diophantus' meth- 
ods in the works of Viete and Fermat, Diophantine 
equations in the works of Euler and Jacobi; The geo- 
metric meaning of the operation of addition of 
points; The arithmetic of algebraic curves; 
Conclusion; Supplement: The role of concrete num- 
bers in Diophantus' Arithmetic; Bibliography. 
Catalog Code: DOL-20/JR 
104 pp., Paperbound, 1997 
ISBN-88385-526-7 
List: $21.95 Member Price: $17.50 
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Magic Tricks, Card Shuffling, and 
Dynamic Computer Memories 
S. Brent Morris 
Series: Spectrum 

Magic Tricks, Card Shuffling, and Dynamic Computer Memories 
is a book that explores the fascinating interconnections 
between these seemingly unrelated topics. It is written for 
undergraduate mathematics, computer science, and electrical 
engineering majors, but it is accessible to motivated high 
school math students and magicians who want to understand 
the mathematics of card shuffling. It is a fun book that stands 
alone, but it could nicely supplement classes in discrete 
mathematics, combinatorics, algorithms, and computer net- 
works. This book looks at the mathematics of the perfect 
shuffle and develops the algorithms for controlling dynamic 
memories (and doing some clever card tricks). 

Each chapter begins with the description of a card trick and 
ends with its explanation, usually using mathematics devel- 
oped in the chapter. The book itself is designed as a prop for 
a trick, but you don't need to use or understand any of its 
mathematics to do some good magic. 

Read what reviewers have said about this book! 

Magic Tricks, Card Shuffling, and Dynamic Computer 
Memories is essential readingfor any magic buff who canfaro 
shuffle or who wishes to acquire this unusual skill. The book will 
also be of great interest to computer scientists and to mathemati- 
cians working in thefield of combinatorics ... anyone can read it 
with enjoyment and profit who is curious about the art and mathe- 
matics of card magic, or about the unexpected application of per- 
fect shuffles to the storage and retrieval of computer information. 

-Martin Gardner 

Provides afascinating mix of history, mathematics and great magic 
tricks. I learned something on every page. 

-Ron Graham, Chief Scientist, AT&T 

.... a tour deforcefor Morris... This is a most unusual and effec- 
tive way to learn the concepts embodied in the interconnections 
of today's parallel computers. 

-Harold Stone, NEC Research, Princeton 

Table of Contents: The Perfect Shuffle: The Origins of the 
Perfect Shuffle; The Faro Dealer's Shuffle; The Mathematical 
Model of the Perfect Shuffle; The Stay-Stack Principle; Trick 
1.2 (The Seekers, by Paul Swinford); The Order of Shuffles: 
The Product of Shuffles; Moving a Card in a Deck; Trick 2.9 
(A Spelling Bee); Shuffle Groups: Randomizing a Deck of 
Cards; Shuffles and Cuts in Even Decks; Shuffles and Cuts in 
Odd Decks; Out- and In-Shuffles in an Even Deck; Trick 3.8 
(A Challenge Poker Deal); Generalizing the Perfect 
Shuffle: Out-Shuffling Several Packets of Cards; Looking for 
a Neat Formula; Permutation Matrices; Generalizing 
Theorems; Generalized Shuffle Groups; Generalizing the In- 
Shuffle; Trick 4.7 (The Triple Seekers); Dynamic Computer 
Memories: The Shift-Register Memory; The Perfect Shuffle 
Memory; The Shift-Shuffle Memory; Details, Details, Details; 
The Perfect-Shuffle Memory for N=2n: Sequential Accessing 
in a Perfect-Shuffle Memory of Size N=2n; Properties of 
Tours; Epilogue; Trick 5.20. (Unshuffled by Paul Gertner); 
Appendix 1: The Order of Shuffles; Appendix 2: How to do 
the Faro Shuffle; The Double or Ordinary Faro Shuffle; The 
Triple Faro Shuffle; Appendix 3: Tours on Decks of Size 8, 
16, 32, and 64; Bibliography: Selected Perfect Shuffle 
References. 
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InP6yas Footsteps 
Miscellaneous Problems and Essays 
Series: Dolciani Mathematical Expositions 

Ross Honisberger 

Another elegant collection ofprobleintsfrom Ross Honsberger 

The study of mathematics is often undertaken with 
an air of such seriousness that it doesn't always seem 
to be much fun at the time. However, it is quite 
amazing how many surprising results and brilliant 
arguments one is in a position to enjoy with just a 
high school background. This is a book of 
miscellaneous delights, presented not in an attempt 
to instruct but as a harvest of rewards that are due 
good high school students and, of course, those 
more advanced - their teachers, and everyone in 
the university mathematics community. Admittedly, 
they take a little concentration, but the price is a 
bargain for such gems. 

A half dozen essays are sprinkled among some 
hundred problems, most of which are the easier 
problems that have appeared on various national and 
international Olympiads. Many subjects are 

represented - combinatorics, geometry, number 
theory, algebra, probability, .... The sections may be 
read in any order. The book concludes with twenty- 
five exercises and their detailed solutions. 

Something to delight will be found in every section 
- a surprising result, an intriguing approach, a stroke 
of ingenuity - and the leisurely pace and generous 
explanations make them a pleasure to read. 

The inspiration for many of the problems came from 
the Olympiad Corner of Crux Matbematicorum, 
published by the Canadian Mathematical Society. 
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328 pp., Paperbound, 1997 
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List: $28.95 MAA Member: $23.00 
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